Skip to main content
Log in

Enhanced LPG sensing property of sol–gel synthesized ZnO nanoparticles-based gas sensors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we have studied the effective use of HCl acid in sol–gel method to demonstrate a ZnO nanoparticles (NPs)-based liquid petroleum gas (LPG) sensor with enhanced sensitivity. ZnO NPs were prepared by adopting standard sol–gel method with modification. The size of the NPs varies from 12 to 40 nm. The growth parameters were tuned to allow the formation of more oxygen vacancies in the as-grown sample, which was confirmed from the absorption study and EDX data. Then, the gas sensors were fabricated using as-prepared ZnO NPs and it was tested for LPG. Interestingly, it was found that the solvent used in the sol–gel method is playing a crucial role in the sensing of LPG. An enhanced sensitivity (~60%) with 1000 ppm of LPG at a lower operating temperature and good performance stability were achieved when aqueous HCl acid was used as a solvent. Commonly used solvent in the sol–gel method is DI water which results in almost similar morphology of the NPs and a sensitivity of 50% only with 1000 ppm of LPG. Response time of 67 s and reset time of 40 s were observed at an operating temperature of 250°C. Use of HCl acid over the commonly used DI depicts better sensing performance of LPG. The effect of operating temperature and concentration of the LPG were investigated in detail to understand the effectiveness of the modified sol–gel-synthesized ZnO NPs sensor for LPG gas and found to be very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liang J, Liu J, Xie Q, Bai S, Yu W and Qian Y 2005 J. Phys. Chem. B 109 9463

    Article  CAS  Google Scholar 

  2. Dhara S and Giri P K 2011 Nanoscale Res. Lett. 6 504

    Article  Google Scholar 

  3. Das J and Khushalani D 2010 J. Phys. Chem. C 114 2544

    Article  CAS  Google Scholar 

  4. Dhara S and Giri P K 2013 Rev. Nanosci. Nanotechnol. 2 147

    Article  CAS  Google Scholar 

  5. Lu J, Ng K M and Yang S 2008 Ind. Eng. Chem. Res. 47 1095

    Article  CAS  Google Scholar 

  6. Pal B, Dhara S, Giri P K and Sarkar D 2014 J. Alloys Compd. 615 378

    Article  CAS  Google Scholar 

  7. Tokumoto M S, Pulcinelli S H, Santilli C V and Briois V 2003 J. Phys. Chem. B 107 568

    Article  CAS  Google Scholar 

  8. Segets D, Gradl J, Taylor R K, Vassilev V and Peukert W 2009 ACS Nano 3 1703

    Article  CAS  Google Scholar 

  9. Bauermann L P, Bill J and Aldinger F 2006 J. Phys. Chem. B 110 5182

    Article  CAS  Google Scholar 

  10. Xu L, Hu Y L, Pelligra C, Chen C H, Jin L, Huang H et al 2009 Chem. Mater. 21 2875

    Article  CAS  Google Scholar 

  11. Wen Z, Wang G, Lu W, Wang Q, Zhang Q and Li J 2007 Cryst. Growth Des. 7 1722

    Article  CAS  Google Scholar 

  12. Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P et al 2004 Appl. Phys. Lett. 84 3654

    Article  CAS  Google Scholar 

  13. Zhang D, Sun Y, Jiang C and Zhang Y 2017 Sens. Actuators B 242 15

    Article  CAS  Google Scholar 

  14. Xu J, Chen Y, Li Y and Shen J 2005 J. Mater. Sci. 40 2919

    Article  CAS  Google Scholar 

  15. Wang C, Chu X and Wu M 2006 Sens. Actuators B 113 320

    Article  CAS  Google Scholar 

  16. Fu Y, Nie Y, Zhao Y, Wang P, Xing L, Zhang Y et al 2015 ACS Appl. Mater. Interfaces 7 10482

    Article  CAS  Google Scholar 

  17. Dehkordi H A, Mokhtari A, Dastafkan K and Soleimanian V 2019 J. Electron. Mater. 48 1258

    Article  Google Scholar 

  18. Shimpi N G, Jain S, Karmakar N, Shah A, Kothari D C and Mishra S 2016 Appl. Surf. Sci. 390 17

    Article  CAS  Google Scholar 

  19. Jabeen M, Iqbal A, Kumar R V and Ahmed M 2019 Sens. Bio-Sens. Res. 25 100293

    Article  Google Scholar 

  20. Zhang D, Dong G, Wu Z, Pan W and Fan X 2019 IEEE Sens. J. 19 2855

    Article  CAS  Google Scholar 

  21. Khojier K, Teimoori F, Zolghadr S and Pashazanousi M B 2018 Mater. Res. Bull. 108 96

    Article  CAS  Google Scholar 

  22. Ayudhya S K N, Tonto P, Mekasuwandumrong O, Pavarajarn V and Praserthdam P 2006 Cryst. Growth Des. 6 2446

    Article  CAS  Google Scholar 

  23. Noack V and Eychmuller A 2002 Chem. Mater. 14 1411

    Article  CAS  Google Scholar 

  24. Clark S J, Robertson J, Lany S and Zunger A 2010 Phys. Rev. B 81 115311

    Article  Google Scholar 

  25. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi (b) 15 627

    Article  CAS  Google Scholar 

  26. Azam A, Ahmed F, Arshi N, Chaman M and Naqvi A H 2010 J. Alloys Compd. 496 399

    Article  CAS  Google Scholar 

  27. Sivapunniyam A, Wiromrat N, Myint M T Z and Dutta J 2011 Sens. Actuators B: Chem. 157 232

    Article  CAS  Google Scholar 

  28. Sahay P P and Nath R K 2008 Sens. Actuators B 133 222

    Article  CAS  Google Scholar 

  29. Prajapati C S, Pandey S N and Sahay P P 2011 Physica B 406 2684

    Article  CAS  Google Scholar 

  30. Pawar R C, Shaikh J S, Moholkar A V, Pawar S M, Kim J H and Patil J Y 2010 Sens. Actuators B: Chem 151 212

    Article  CAS  Google Scholar 

  31. Schneider J J, Hoffmann R C, Engstler J, Klyszcz A, Erdem E, Jakes P et al 2010 Chem. Mater. 22 2203

    Article  CAS  Google Scholar 

  32. Hosseini Z S, Mortezaali A, Irajizad A and Fardindoost S 2015 J. Alloys Compd. 628 222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AM acknowledges the support received from UGC, India, under Dr D S Kothari Postdoctoral Fellowship Scheme. SD is thankful to SERB, India, for the financial support through the research Grant No. PDF/2018/000031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Dhara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuvinayagam, A., Dhara, S. Enhanced LPG sensing property of sol–gel synthesized ZnO nanoparticles-based gas sensors. Bull Mater Sci 44, 159 (2021). https://doi.org/10.1007/s12034-021-02455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02455-w

Keywords

Navigation