Skip to main content

Advertisement

Log in

Carbon nanotubes embedded in α-MoO3 nanoribbons for enhanced lithium-ion storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum oxide (MoO3) has become a potential anode material for lithium-ion batteries due to high theoretical capacity and environmental friendliness. Nonetheless, MoO3 suffers from serious capacity fading caused by severe pulverization and lower electronic conductivity. Herein, the carbon nanotubes (CNTs) are embedded in α-MoO3 nanoribbons via a facile one-step hydrothermal process. The synergistic effect of α-MoO3 and CNTs can effectively alleviate the volume expansion of α-MoO3 and dominated Li+ storage properties. As a result, the flexible α-MoO3/CNTs composite exhibits excellent rate capability compared with the original α-MoO3, as well as a reversible capacity of 270 mAh/g after 250 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  2. S.R. Sahu, V.R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan, Adv. Energy Mater. 10, 14 (2020). https://doi.org/10.1002/aenm.202001627

    Article  CAS  Google Scholar 

  3. X.-Z. Li, Y.-R. Ji, W.-Y. Chai, Z. Huo, T.-F. Yi, Y. Xie, Dalton Trans. 51, 168 (2021). https://doi.org/10.1039/D1DT03588F

    Article  Google Scholar 

  4. P.-P. Peng, Y.-R. Wu, X.-Z. Li et al., Rare Met. 40, 3049 (2021). https://doi.org/10.1007/s12598-021-01742-z

    Article  CAS  Google Scholar 

  5. T.-T. Wei, Y.-R. Wu, Y.-S. Zhao, J.-H. Zhang, Y.-R. Zhu, T.-F. Yi, Surf. Coat. Technol. 423, 127580 (2021). https://doi.org/10.1016/j.surfcoat.2021.127580

    Article  CAS  Google Scholar 

  6. T.-F. Yi, J. Mei, P.-P. Peng, Compos. B: Eng. 167, 566 (2019). https://doi.org/10.1016/j.compositesb.2019.03.032

    Article  CAS  Google Scholar 

  7. T.-F. Yi, Y. Xie, Y.-R. Zhu, R.-S. Zhu, H. Shen, J. Power Sources 222, 448 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.020

    Article  CAS  Google Scholar 

  8. L. Tf Yi, X. Shi, F. Han, Y. Wang, Y. Zhu, Xie, Energy Environ. Mater. 4, 586 (2020). https://doi.org/10.1002/eem2.12140

    Article  CAS  Google Scholar 

  9. X.X. Liu, T.Y. Ji, H. Guo et al., Electrochem. Energy Rev. (2021). https://doi.org/10.1007/s41918-021-00114-6

    Article  Google Scholar 

  10. F.X. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49, 1569 (2020). https://doi.org/10.1039/c7cs00863e

    Article  CAS  Google Scholar 

  11. V. Aravindan, P. Sennu, Y.S. Lee, S. Madhavi, J. Phys. Chem. Lett. 8, 4031 (2017). https://doi.org/10.1021/acs.jpclett.7b01653

    Article  CAS  Google Scholar 

  12. Y.H. Xu, Q. Liu, Y.J. Zhu et al., Nano Lett. 13, 470 (2013). https://doi.org/10.1021/nl303823k

    Article  CAS  Google Scholar 

  13. Z.-L. Cai, Z.-L. Peng, M.-Q. Wang, J.-Y. Wu, H.-S. Fan, Y.-F. Zhang, Rare Met. 40, 1451 (2021). https://doi.org/10.1007/s12598-020-01630-y

    Article  CAS  Google Scholar 

  14. K.Z. Cao, T. Jin, L. Yang, Mat. Chem. Front. 1, 2213 (2017). https://doi.org/10.1039/c7qm00175d

    Article  CAS  Google Scholar 

  15. P.J. Lu, M. Lei, Crystengcomm 16, 6745 (2014). https://doi.org/10.1039/c4ce00252k

    Article  CAS  Google Scholar 

  16. K. Wu, J. Zhan, G. Xu, C. Zhang, D.Y. Pan, Nanoscale 10, 16040 (2018). https://doi.org/10.1039/c8nr03372b

    Article  CAS  Google Scholar 

  17. M.B. Sreedhara, A.L. Santhosha, A.J. Bhattacharyya, C.N.R. Rao, J. Mater. Chem. A 4, 9466 (2016). https://doi.org/10.1039/c6ta02561g

    Article  CAS  Google Scholar 

  18. S. Wang, H.J. Zhang, D. Zhang, Y. Ma, X.F. Bi, S.B. Yang, J. Mater. Chem. A 6, 672 (2018). https://doi.org/10.1039/c7ta09158c

    Article  CAS  Google Scholar 

  19. S.B. Patil, B. Udayabhanu, G. Kishore, J. Nagaraju, Dupont, New J. Chem. 42, 18569 (2018). https://doi.org/10.1039/c8nj03190h

    Article  CAS  Google Scholar 

  20. Y. Li, J. Yin, Y. Feng et al., Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132228

    Article  Google Scholar 

  21. S. Zhou, S. Wang, S. Zhou et al., Nanoscale 12, 8934 (2020). https://doi.org/10.1039/d0nr01152e

    Article  CAS  Google Scholar 

  22. C. Yang, X. Zhong, Y. Jiang, Y. Yu, Chin. Chem. Lett. 28, 2231 (2017). https://doi.org/10.1016/j.cclet.2017.11.027

    Article  CAS  Google Scholar 

  23. L. Sun, K. Wang, N. Li, J. Zhang, X. Guo, X. Liu, Chin. Chem. Lett. 31, 2333 (2020). https://doi.org/10.1016/j.cclet.2020.02.006

    Article  CAS  Google Scholar 

  24. H.J. Lee, H.W. Shim, J.C. Kim, D.W. Kim, Electrochim. Acta 251, 81 (2017). https://doi.org/10.1016/j.electacta.2017.08.103

    Article  CAS  Google Scholar 

  25. J.F. Ni, G.B. Wang, J. Yang et al., J. Power Sources 247, 90 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.068

    Article  CAS  Google Scholar 

  26. J.Y.C. Qiu, Z.X. Yang, Y. Li, J. Mater. Chem. A 3, 24245 (2015). https://doi.org/10.1039/c5ta05924k

    Article  CAS  Google Scholar 

  27. T. Tao, A.M. Glushenkov, C.F. Zhang et al., J. Mater. Chem. 21, 9350 (2011). https://doi.org/10.1039/c1jm10220f

    Article  CAS  Google Scholar 

  28. L. Zhou, L.C. Yang, P. Yuan, J. Zou, Y.P. Wu, C.Z. Yu, J. Phys. Chem. C 114, 21868 (2010). https://doi.org/10.1021/jp108778v

    Article  CAS  Google Scholar 

  29. B. Yao, L. Huang, J. Zhang et al., Adv. Mater. 28, 6353 (2016). https://doi.org/10.1002/adma.201600529

    Article  CAS  Google Scholar 

  30. L. Cheng, M.W. Shao, X.H. Wang, Chem. Eur. J. 15, 2310 (2009). https://doi.org/10.1002/chem.200802182

    Article  CAS  Google Scholar 

  31. Z.Y. Wang, S. Madhavi, X.W. Lou, J. Phys. Chem. C 116, 12508 (2012). https://doi.org/10.1021/jp304216z

    Article  CAS  Google Scholar 

  32. S.-R. He, J.-P. Zou, L.-B. Chen, Y.-J. Chen, Rare Met. 40, 374 (2020). https://doi.org/10.1007/s12598-020-01444-y

    Article  CAS  Google Scholar 

  33. J. Chang, M. Jin, F. Yao et al., Adv. Funct. Mater. 23, 5074 (2013). https://doi.org/10.1002/adfm201301851

    Article  CAS  Google Scholar 

  34. P. Qin, S.-Q. Zhang, K.-K.-L. Yung, Z.-F. Huang, B. Gao, Rare Met. 40, 2447 (2021). https://doi.org/10.1007/s12598-021-01722-3

    Article  CAS  Google Scholar 

  35. S. Qiu, G.X. Lu, J.R. Liu et al., RSC Adv. 5, 87286 (2015). https://doi.org/10.1039/c5ra17147d

    Article  CAS  Google Scholar 

  36. X.H. Cao, B. Zheng, W.H. Shi et al., Adv. Mater. 27, 4695 (2015). https://doi.org/10.1002/adma.201501310

    Article  CAS  Google Scholar 

  37. L. Noerochim, J.Z. Wang, D. Wexler, Z. Chao, H.K. Liu, J. Power Sources 228, 198 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.113

    Article  CAS  Google Scholar 

  38. B.C. Windom, W.G. Sawyer, D.W. Hahn, Tribol. Lett. 42, 301 (2011). https://doi.org/10.1007/s11249-011-9774-x

    Article  CAS  Google Scholar 

  39. X.F. Yang, H.Y. Ding, D. Zhang et al., Cryst. Res. Technol. 46, 1195 (2011). https://doi.org/10.1002/crat.201100302

    Article  CAS  Google Scholar 

  40. T.-F. Yi, L.-Y. Qiu, J. Mei et al., Sci. Bull. 65, 546 (2020). https://doi.org/10.1016/j.scib.2020.01.011

    Article  CAS  Google Scholar 

  41. A. Bhaskar, M. Deepa, T.N. Rao, ACS Appl. Mater. Interfaces 5, 2555 (2013). https://doi.org/10.1021/am3031536

    Article  CAS  Google Scholar 

  42. C.F. Sun, K. Karki, Z. Jia et al., ACS Nano 7, 2717 (2013). https://doi.org/10.1021/nn4001512

    Article  CAS  Google Scholar 

  43. C.F. Sun, H.L. Zhu, M. Okada et al., Nano Lett. 15, 703 (2015). https://doi.org/10.1021/nl504242k

    Article  CAS  Google Scholar 

  44. H. Zheng, H. Zhang, Y. Fan et al., Chin. Chem. Lett. 31, 210 (2020). https://doi.org/10.1016/j.cclet.2019.03.048

    Article  CAS  Google Scholar 

  45. Y.-R. Ji, S.-T. Weng, X.-Y. Li, Q.-H. Zhang, L. Gu, Rare Met. 39, 205 (2020). https://doi.org/10.1007/s12598-020-01369-6

    Article  CAS  Google Scholar 

  46. S. Shin, J. Yoon, E. Kim, W.S. Yoon, H. Shin, Energy Technol. 8, 9 (2020). https://doi.org/10.1002/ente.201901502

    Article  CAS  Google Scholar 

  47. G.B. Wang, J.F. Ni, H.B. Wang, L.J. Gao, J. Mater. Chem. A 1, 4112 (2013). https://doi.org/10.1039/c3ta01424j

    Article  CAS  Google Scholar 

  48. G.-Y. Zeng, H. Wang, J. Guo, L.-M. Cha, Y.-H. Dou, J.-M. Ma, Chin. Chem. Lett. 28, 755 (2017). https://doi.org/10.1016/j.cclet.2017.01.001

    Article  CAS  Google Scholar 

  49. F. Ma, A.B. Yuan, J.Q. Xu, ACS Appl. Mater. Interfaces 7, 15531 (2015). https://doi.org/10.1021/acsami.5b03953

    Article  CAS  Google Scholar 

  50. D. Han, S. Hwang, S.-M. Bak, K.-W. Nam, Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138635

    Article  Google Scholar 

  51. Q. Huang, J. Hu, M. Zhang et al., Chin. Chem. Lett. 33, 1091 (2022). https://doi.org/10.1016/j.cclet.2021.06.088

    Article  CAS  Google Scholar 

  52. S. Yoon, C. Jo, S.Y. Noh, C.W. Lee, J.H. Song, J. Lee, Phys. Chem. Chem. Phys. 13, 11060 (2011). https://doi.org/10.1039/c1cp20940j

    Article  CAS  Google Scholar 

  53. R.-X. Sun, Y. Yue, X.-F. Cheng et al., Rare Met. 40, 3205 (2021). https://doi.org/10.1007/s12598-020-01681-1

    Article  CAS  Google Scholar 

  54. J. Ding, S.A. Abbas, C. Hanmandlu et al., J. Power Sources 348, 270 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was financially supported by the Natural Science Foundation of Heilongjiang Province through Grant No. HL2020A014 and ZD2009103.

Author information

Authors and Affiliations

Authors

Contributions

XL and QZ are responsible for formulating or evolving of overarching research goals and aims. DS wrote the manuscript and synthesized the samples. MZ conducted electrochemical measurements. All authors including XW, SZ, and SF have critically commented on the interpretation of data and proofread the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoxu Liu or Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4661.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, D., Zhang, M., Wang, X. et al. Carbon nanotubes embedded in α-MoO3 nanoribbons for enhanced lithium-ion storage. J Mater Sci: Mater Electron 33, 11743–11752 (2022). https://doi.org/10.1007/s10854-022-08139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08139-3

Navigation