Skip to main content

Advertisement

Log in

Cellulose acetate membranes treated with titanium dioxide and cerium dioxide nanoparticles and their nanocomposites for enhanced photocatalytic degradation activity of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the photocatalytic degradation activity of methylene blue (MB) using Cellulose acetate (CA) membranes embedded by metal oxide nanoparticles (NPs). Titanium dioxide and Cerium dioxide (TiO2 and CeO2) and their nanocomposites are used as nanofillers in CA membranes to enhance photocatalytic activity. The casted nanocomposite membranes are synthesized using the phase inversion method and characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, Fourier-transform infrared spectroscopy, and UV–Vis to investigate structural, surface morphological, elemental content, and the optical properties. In particular, surface morphological and optical results are analyzed to elucidate a deeper understanding of porosity and photocatalytic activity via the degradation of the MB dye. The as-prepared CA–NP membranes are tested for photocatalytic degradation of MB by exposing the membrane/MB dye combination to UV illumination for different exposure times. Results reveal that CA–TiO2 membrane exhibits the smallest nanopore size, the most efficient exciton separation, and the largest surface area as compared with CA–CeO2 and CA–TiO2–CeO2-casted membranes. Consequently, CA–TiO2 membrane shows a good cyclic photocatalytic degradation activity (about 64%). Furthermore, the obtained MB degradation activity follows the increasing trend: CA–TiO2 membrane (Energy gap \(\user2{E}_{{\mathbf{g}}} \, = \,3.26\,{\mathbf{eV}},\) Absorption activity \({\varvec{A}}\boldsymbol{\%}=64\boldsymbol{\%}\)) > CA–TiO2–CeO2 membrane (\({{\varvec{E}}}_{\text{g}}=3.33\,{\mathbf{eV}},\boldsymbol{ }{\varvec{A}}\boldsymbol{\%}=15\boldsymbol{\%}\)) > CA–CeO2 (\({{\varvec{E}}}_{\text{g}}=3.4\,{\mathbf{eV}},\boldsymbol{ }{\varvec{A}}\boldsymbol{\%}=7\boldsymbol{\%}\)) that is directly correlated with the values of the \({{\varvec{E}}}_{\text{g}}\) of the NP component of the membranes, the high porosity, and large surface area of the membrane. This suggests the synergetic use of the two metal oxides in potential applications of the photocatalytic degradation of MB and other organic pollutants for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. N. Yadav et al., Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J. Colloid Interface Sci. 527, 289–297 (2018)

    Article  CAS  Google Scholar 

  2. L. Madhura, S. Singh, A review on the advancements of nanomembranes for water treatment. Nanotechnol. Environ. Sci. (2018). https://doi.org/10.1002/9783527808854.ch12

    Article  Google Scholar 

  3. M. Nagpal, R. Kakkar, Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep. Purif. Technol. 211, 522–539 (2019)

    Article  CAS  Google Scholar 

  4. Y. Liu et al., Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers. J. Environ. Sci. 24(10), 1867–1875 (2012)

    Article  CAS  Google Scholar 

  5. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3–4), 997–1026 (2005)

    Article  CAS  Google Scholar 

  6. K. Bouziane Errahmani et al., Photocatalytic nanocomposite polymer-TiO2 membranes for pollutant removal from wastewater. Catalysts 11(3), 402 (2021)

    Article  CAS  Google Scholar 

  7. B. Appavu et al., BiVO4/N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system. Ecotoxicol. Environ. Saf. 151, 118–126 (2018)

    Article  CAS  Google Scholar 

  8. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B 87(3–4), 105–145 (2009)

    Article  CAS  Google Scholar 

  9. N.D. Desai et al., Development of dye sensitized TiO2 thin films for efficient energy harvesting. J. Alloy. Compd. 790, 1001–1013 (2019)

    Article  CAS  Google Scholar 

  10. A.M. Al-Diabat et al., A high-sensitivity hydrogen gas sensor based on carbon nanotubes fabricated on SiO2 substrate. Nanocomposites 7(1), 172–183 (2021)

    Article  CAS  Google Scholar 

  11. K. Intarasuwan et al., Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X= H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 177, 304–312 (2017)

    Article  CAS  Google Scholar 

  12. A.-Y. Zhang et al., Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 92, 78–86 (2016)

    Article  CAS  Google Scholar 

  13. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  14. H. Yan et al., Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog. Nat. Sci. Mater. Int. 23(4), 402–407 (2013)

    Article  CAS  Google Scholar 

  15. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012)

    Article  CAS  Google Scholar 

  16. S. Chen, L.-W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24(18), 3659–3666 (2012)

    Article  CAS  Google Scholar 

  17. U. Martinez, B. Hammer, Adsorption properties versus oxidation states of rutile TiO2 (110). J. Chem. Phys. 134(19), 194703 (2011)

    Article  CAS  Google Scholar 

  18. N.A. Deskins, R. Rousseau, M. Dupuis, Defining the role of excess electrons in the surface chemistry of TiO2. J. Phys. Chem. C 114(13), 5891–5897 (2010)

    Article  CAS  Google Scholar 

  19. S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5(01), 129 (2017)

    CAS  Google Scholar 

  20. T. Mano et al., Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chem. Eng. J. 264, 221–229 (2015)

    Article  CAS  Google Scholar 

  21. M. Pawar, S. Topcu Sendoğdular, P. Gouma, A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce–TiO2 photocatalysts system. J. Nanomater. 2018, 1–13 (2018)

    Article  CAS  Google Scholar 

  22. F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356, 15–30 (2015)

    Article  CAS  Google Scholar 

  23. N.H. Alias et al., Photocatalytic materials-based membranes for efficient water treatment, in Handbook of Smart Photocatalytic Materials. (Elsevier, 2020), pp. 209–230

    Chapter  Google Scholar 

  24. H. Matsuyama et al., Porous cellulose acetate membrane prepared by thermally induced phase separation. J. Appl. Polym. Sci. 89(14), 3951–3955 (2003)

    Article  CAS  Google Scholar 

  25. S.H. Paiman et al., Functionalization effect of Fe-type MOF for methylene blue adsorption. J. Saudi Chem. Soc. 24(11), 896–905 (2020)

    Article  CAS  Google Scholar 

  26. S. Lvov et al., Nafion®/TiO2 composite membranes for PEM fuel cells operating at elevated temperature and reduced relative humidity. ECS Trans. 3(1), 73 (2006)

    Article  Google Scholar 

  27. V. Baglio et al., Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells. J. New Mater. Electrochem. Syst. 7, 275–280 (2004)

    CAS  Google Scholar 

  28. G. Arthanareeswaran et al., Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur. Polym. J. 40(9), 2153–2159 (2004)

    Article  CAS  Google Scholar 

  29. X. Wang et al., Preparation, characterisation, and desalination performance study of cellulose acetate membranes with MIL-53 (Fe) additive. J. Membr. Sci. 590, 117057 (2019)

    Article  CAS  Google Scholar 

  30. S.D. Delekar et al., Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru (II) sensitizers. ACS Omega 3(3), 2743–2756 (2018)

    Article  CAS  Google Scholar 

  31. S. Delekar et al., Molecular self-assembled designing and characterization of TiO2 NPs-CdS QDs-dye composite for photoanode materials. Mater. Charact. 139, 337–346 (2018)

    Article  CAS  Google Scholar 

  32. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018)

    Article  CAS  Google Scholar 

  33. D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46(4), 855–874 (2011)

    Article  CAS  Google Scholar 

  34. I.-C. Kim, K.-H. Lee, Effect of poly (ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J. Membr. Sci. 230(1–2), 183–188 (2004)

    Article  CAS  Google Scholar 

  35. P. Thistlethwaite, M. Hook, Diffuse reflectance Fourier transform infrared study of the adsorption of oleate/oleic acid onto titania. Langmuir 16(11), 4993–4998 (2000)

    Article  CAS  Google Scholar 

  36. K. Zhang, K.C. Kemp, V. Chandra, Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater. Lett. 81, 127–130 (2012)

    Article  CAS  Google Scholar 

  37. Y. Chen et al., Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv. 10(40), 23936–23943 (2020)

    Article  CAS  Google Scholar 

  38. Y. Alqaheem, A.A. Alomair, Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes 10(2), 33 (2020)

    Article  CAS  Google Scholar 

  39. M.E. Culica et al., Cellulose acetate incorporating organically functionalized CeO2 NPs: efficient materials for UV filtering applications. Materials 13(13), 2955 (2020)

    Article  CAS  Google Scholar 

  40. X. Jin et al., Flexible TiO2/cellulose acetate hybrid film as a recyclable photocatalyst. RSC Adv. 4(25), 12640–12648 (2014)

    Article  CAS  Google Scholar 

  41. S. Chougule et al., Low density polyethylene films incorporated with Biosynthesised silver nanoparticles using Moringa oleifera plant extract for antimicrobial, food packaging, and photocatalytic degradation applications. J. Plant Biochem. Biotechnol. 30(1), 208–214 (2021)

    Article  CAS  Google Scholar 

  42. M.A. Abu-Dalo, S.A. Al-Rosan, B.A. Albiss, Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with ZnO nanostructures. Polymers 13(19), 3451 (2021)

    Article  CAS  Google Scholar 

  43. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1), 189–218 (2013)

    Article  CAS  Google Scholar 

  44. T. Li et al., A membrane modified with nitrogen-doped TiO2/graphene oxide for improved photocatalytic performance. Appl. Sci. 9(5), 855 (2019)

    Article  CAS  Google Scholar 

  45. J.-H. Li et al., Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Appl. Surf. Sci. 324, 82–89 (2015)

    Article  CAS  Google Scholar 

  46. J. Harris et al., Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation. ACS Omega 5(30), 18919–18934 (2020)

    Article  CAS  Google Scholar 

  47. M. Tommalieh et al., Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat. Phys. Chem. 179, 109195 (2021)

    Article  CAS  Google Scholar 

  48. P. Dhatarwal, R. Sengwa, Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites. Optik 233, 166594 (2021)

    Article  CAS  Google Scholar 

  49. A.M. Al-Diabat et al., Influence of the spray distance to substrate on optical properties of chemically sprayed ZnS thin films. J. Mater. Sci. Mater. Electron. 28(1), 371–375 (2017)

    Article  CAS  Google Scholar 

  50. A. Alsaad et al., Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films. Polym. Bull. 79(4), 2019–2040 (2022)

    Article  CAS  Google Scholar 

  51. K. Joshi et al., Band gap widening and narrowing in Cu-doped ZnO thin films. J. Alloy. Compd. 680, 252–258 (2016)

    Article  CAS  Google Scholar 

  52. S. Aksoy et al., Effect of Sn dopants on the optical and electrical properties of ZnO films. Opt. Appl. 40(1), 7–14 (2010)

    CAS  Google Scholar 

  53. M.D. Hernández-Alonso et al., Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ. Sci. 2(12), 1231–1257 (2009)

    Article  CAS  Google Scholar 

  54. R. Ma et al., Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram. Int. 42(16), 18495–18502 (2016)

    Article  CAS  Google Scholar 

  55. K. Qi et al., A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38(12), 1936–1955 (2017)

    Article  CAS  Google Scholar 

  56. J. Wang et al., ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB. Appl. Surf. Sci. 456, 666–675 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the deanship of scientific research at Jordan University of Science and Technology for financial, technical, and logistic support. Special acknowledgments are forwarded to Prof. Ahmad Al-Omari and Prof. Mohammad Al-Omari at the department of Physics, Jordan University of Science and Technology, for the access provided for their laboratories.

Funding

This research was funded by Jordan University of Science and Technology, Jordan (Grant No. 350-2020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BA, AA, BA, SA, and AA; Methodology: BA, AA, BA, SA, and AA; Investigation: BA, AA, BA, SA, and AA; Data curation: BA, AA, BA, SA, AA, and S. Mutlaq; Formal analysis: BA, AA, BA, SA, and AA; Writing—original draft: BA, AA, SA, and AA; Writing—review & editing of the manuscript: BA, AA, BA, and AA; Funding acquisition: AA and BA; Project administration; AA and BA; Resources: AA and BA; Supervision, BA, AA, BA, and AA; Validation: BA, AA, BA, SA, and AA; Visualization: BA, AA, and BA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Alsaad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest (financial or non-financial).

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljawrneh, B., Alsaad, A., Albiss, B. et al. Cellulose acetate membranes treated with titanium dioxide and cerium dioxide nanoparticles and their nanocomposites for enhanced photocatalytic degradation activity of methylene blue. J Mater Sci: Mater Electron 33, 11420–11433 (2022). https://doi.org/10.1007/s10854-022-08115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08115-x

Navigation