Skip to main content
Log in

Lowered sintering temperature and modulated microwave dielectric properties in Mg2SiO4 forsterite via Ge substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a strategy was demonstrated to reduce the sintering temperature of Mg2SiO4 ceramics while keeping the macrostructure unchanged, through an appropriate amount of low melting point Ge substitution for B-site Si. A series of Mg2Si1xGexO4 (x = 0.1–0.4) ceramics were prepared by a solid-state reaction method. Influences of Ge substitution on the sintering behavior, crystal structure, and microwave dielectric properties were studied. By comparison, the Ge-substituted samples could be effectively sintered at relatively lower sintering temperatures (~ 1370 °C), which is more than 100 °C lower than the nominal Mg2SiO4. In addition, the optimum microwave dielectric performance was achieved in the sample with x = 0.4, with the relative density ~ 97%, the relative dielectric constant (εr) of 7.2, the quality factor (Q × f) of 75,794 GHz, and the temperature coefficient of the resonance frequency (τf) of − 41.2 ppm/°C. This compositional regulation provides a paradigm for improving the sintering characteristics of silicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C.X. Chen, S.P. Wu, Y.X. Fan, Synthesis and microwave dielectric properties of B2O3-doped Mg2GeO4 ceramics. J. Alloys Compd. 578, 153–156 (2013)

    Article  CAS  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  3. K.X. Song, X.M. Chen, X.C. Fan, Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J. Am. Ceram. Soc. 90, 1808–1811 (2007)

    Article  CAS  Google Scholar 

  4. T. Joseph, M.T. Sebastian, Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A = Ca, Ba and B = Co, Mg, Mn, Ni). J. Am. Ceram. Soc. 93, 147–154 (2010)

    Article  CAS  Google Scholar 

  5. R. Peng, Y. Li, H. Su, Y. Lu, Y. Yun, Q. Zhang, S. Zhang, Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: Calculation and experiment. J. Alloys Compds. 827, 154162 (2020)

    Article  CAS  Google Scholar 

  6. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23, 2573–2578 (2003)

    Article  CAS  Google Scholar 

  7. H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Okawa, K. Kakimoto, H. Ogawa, Microwave millimeterwave dielectric materials. Key Eng. Mater. 269, 195–198 (2004)

    Article  CAS  Google Scholar 

  8. T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloys. Compds. 461, 555–559 (2008)

    Article  CAS  Google Scholar 

  9. J. Zhang, Z. Yue, Y. Luo, X. Zhang, L. Li, M. Sebastian, Novel low-firing forsterite-based microwave dielectric for LTCC Applications. J. Am. Ceram. Soc. 99, 1122–1124 (2016)

    Article  CAS  Google Scholar 

  10. T.S. Sasikala, C. Pavithran, M.T. Sebastian, Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg2SiO4 ceramics. J. Mater. Sci. Mater. Electron. 21, 141–144 (2010)

    Article  CAS  Google Scholar 

  11. G. Dou, D. Zhou, M. Guo, S. Gong, Y. Hu, Low-temperature sintered Mg2SiO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J. Mater. Sci. Mater. Electron. 24, 1431–1438 (2012)

    Article  CAS  Google Scholar 

  12. K.X. Song, X.M. Chen, C.W. Zheng, Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system. Ceram. Int. 34, 917–920 (2008)

    Article  CAS  Google Scholar 

  13. T. Tsunooka, H. Sugiyama, K. Kakimoto, H. Ohsato, H. Ogawa, Zero Temperature coefficient τf and sinterability of forsterite ceramic by rutile addition. J. Ceram. Soc. Jpn. 112, 1637–1640 (2004)

    Google Scholar 

  14. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, H. Sugiura, Development of forsterite with high Q and zero temperature coefficient τf for millimeterwave dielectric ceramics. Key Eng. Mater. 269, 199–202 (2004)

    Article  CAS  Google Scholar 

  15. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2-xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38, 1508–1516 (2018)

    Article  CAS  Google Scholar 

  16. C. Zhang, R. Zuo, J. Zhang, Y. Wang, J. Jones, Structure-dependent microwave dielectric properties and middle-temperature sintering of forsterite (Mg1-xNix)2SiO4 Ceramics. J. Am. Ceram. Soc. 98, 702–710 (2015)

    Article  CAS  Google Scholar 

  17. T. Sugiyama, T. Tsunooka, K. Kakimoto, H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. J. Eur. Ceram. Soc. 26, 2097–2100 (2006)

    Article  CAS  Google Scholar 

  18. X. Du, H. Su, H. Zhang, Y. Jing, Z. Zhou, G. Gan, X. Tang, Effects of Li-ion substitution on the microwave dielectric properties of low-temperature sintered ceramics with nominal composition Li2xMg2-xSiO4. Ceram. Int. 44, 2300–2303 (2018)

    Article  CAS  Google Scholar 

  19. H. Xiang, C. Li, C. Yin, Y. Tang, L. Fang, A reduced sintering temperature and improvement in the microwave dielectric properties of Li2Mg3TiO6 through Ge substitution. Ceram. Int. 44, 5817–5821 (2018)

    Article  CAS  Google Scholar 

  20. R. Grabovickic, Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators. IEEE Trans. Appl. Supercond. 9, 4607–4612 (1999)

    Article  Google Scholar 

  21. A. Ullah, H. Liu, H. Hao, J. Iqbal, Z. Yao, M. Cao, Influence of TiO2 additive on sintering temperature and microwave dielectric properties of Mg0.9Ni0.1SiO3 ceramics. J. Eur. Ceram. Soc. 37, 3045–3049 (2017)

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–769 (1976)

    Article  Google Scholar 

  23. L. Vegard, Die konstitution der mischkristalle and die raumfüllung der atome. Z. Phys. 5, 17–26 (1921)

    Article  CAS  Google Scholar 

  24. J. Hanuza, M. Maczka, M. Ptak, J. Lorenc, K. Hermanowicz, P. Becker, L. Bohatý, A.A. Kaminskii, Polarized IR and Raman spectra, temperature dependence of phonons and lattice dynamic calculations for M′2M″Ge2O7 pyrogermanates (M′ = Sr, Ba; M″ = Mg, Zn). J. Raman Spectrosc. 42, 782–789 (2011)

    Article  CAS  Google Scholar 

  25. C. Pei, Y. Xiong, C. Yin, G. Yao, C. Li, Influence of lithium substitution for zinc on crystal structure and microwave dielectric properties of willemite Li2x Zn2-x GeO4. ECS J. Solid. State Sci. 9, 073005 (2020)

    Article  CAS  Google Scholar 

  26. H.C. Xiang, C. Li, H. Jantunen, L. Fang, A. Hill, An ultra-low loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for LTCC applications. ACS Sustain. Chem. Eng. 6, 6458–6466 (2018)

    Article  CAS  Google Scholar 

  27. P.K. Lam, R.C. Yu, M.W. Lee, Structural distortions and vibrational modes in Mg2SiO4. Am. Miner. 75, 109–119 (1990)

    CAS  Google Scholar 

  28. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290 (1981)

    Article  CAS  Google Scholar 

  29. C. Yin, H. Xiang, C. Li, H. Porwal, L. Fang, Low-temperature sintering and thermal stability of Li2GeO3-based microwave dielectric ceramics with low permittivity. J. Am. Ceram. Soc. 101, 4608–4614 (2018)

    Article  CAS  Google Scholar 

  30. C. Yin, Y. Tang, J. Chen, C. Li, L. Fang, F. Li, Y. Huang, Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (-0.1≤x≤0.2). J. Mater. Sci. Mater. Electron. 30, 16651–16658 (2019)

    Article  CAS  Google Scholar 

  31. H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37, 3959–3963 (2017)

    Article  CAS  Google Scholar 

  32. R.G. Madhuri, Subodh, Crystal structure, phonon modes, and bond characteristics of AgPb2B2V3O12 (B = Mg, Zn) microwave ceramics. J. Am. Ceram. Soc. 103, 3157–3167 (2020)

    Article  CAS  Google Scholar 

  33. C.L. Huang, M.H. Weng, H.L. Chen, Effects of additives on microstructures and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Chem. Phys. 71, 17–22 (2001)

    Article  CAS  Google Scholar 

  34. E.S. Kim, K.H. Yoon, Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3. J. Mater. Sci. 29, 830–834 (1994)

    Article  CAS  Google Scholar 

  35. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  36. C. Li, C. Yin, J. Chen, H. Xiang, Y. Tang, L. Fang, Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J. Eur. Ceram. Soc. 38, 5246–5251 (2018)

    Article  CAS  Google Scholar 

  37. H.H. Guo, D. Zhou, W.F. Liu, L.X. Pang, D.W. Wang, J.Z. Su, D.Z.M. Qi, Microwave dielectric properties of temperature-stable, zircon-type (Bi, Ce)VO4 Solid-Solution ceramics. J. Am. Ceram. Soc. 103, 423–431 (2020)

    Article  CAS  Google Scholar 

  38. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  CAS  Google Scholar 

  39. N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Cryst. 47, 192–197 (1991)

    Article  Google Scholar 

  40. I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure Database. Acta Cryst. 41, 244–247 (1985)

    Article  Google Scholar 

  41. Y. Xiong, H.Y. Xie, Z.G. Rao, Z.F. Wang, C. Li, Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. J. Adv. Ceram. 10, 1360–1370 (2021)

    Article  CAS  Google Scholar 

  42. C. Yin, Z. Yu, L. Shu, L. Liu, Y. Chen, C. Li, A low-firing melilite ceramic Ba2CuGe2O7 and compositional modulation on microwave dielectric properties through Mg substitution. J. Adv. Ceram. 10, 108–119 (2020)

    Article  CAS  Google Scholar 

  43. A.L. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961)

    Article  CAS  Google Scholar 

  44. C. Li, H. Xiang, M. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38, 1524–1528 (2018)

    Article  CAS  Google Scholar 

  45. J.S. Kim, N.H. Nguyen, J.B. Lim, D.S. Paik, S. Nahm, J.H. Paik, J.H. Kim, H.J. Lee, Low-temperature sintering and microwave dielectric properties of the Zn2SiO4 ceramics. J. Am. Ceram. Soc. 91, 671–674 (2008)

    Article  CAS  Google Scholar 

  46. Y.C. Chen, Y.N. Wang, C.H. Hsu, Elucidating the dielectric properties of Mg2SnO4 ceramics at microwaveowave frequency. J. Alloys Compd. 509, 9650–9653 (2011)

    Article  CAS  Google Scholar 

  47. S. Wu, Q. Ma, Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics. J. Alloys Compd. 567, 40–46 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Chunchun Li gratefully acknowledges the financial support from the Natural Science Foundation of China (No. 62061011) and Guangxi Zhuang Autonomous Region (No. 2018GXNSFAA281253, 2019GXNSFGA245006) and the high-level innovation team and outstanding scholar program of Guangxi institutes. LB Zhang and HR Mei thank CZ Yin from Huazhong University of science and technology for his guidance on data analysis of the Rietveld refinements.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LZ and HM. The first draft of the manuscript was written by LZ, ZR, and CL. LS helped revise the previous manuscript and responded to the comments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunchun Li.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Mei, H., Rao, Z. et al. Lowered sintering temperature and modulated microwave dielectric properties in Mg2SiO4 forsterite via Ge substitution. J Mater Sci: Mater Electron 33, 10183–10193 (2022). https://doi.org/10.1007/s10854-022-08008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08008-z

Navigation