Skip to main content
Log in

Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (− 0.1 ≤ x ≤ 0.2)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of willemite based ceramics Zn2Ge1+xO4+2x with − 0.1 ≤ x ≤ 0.2 were prepared by the solid-state reaction method. Influences of Ge nonstoichiometry on the crystal structure, densification, and microwave dielectric properties were evaluated in terms of X-ray diffraction, SEM, dielectric measurements and far-infrared spectra. Ge excess favored the formation of single-phase willemite but a high level of excess induced appearance of GeO2. In contrast, nominal composition and those with Ge deficiency comprised of ZnO and the willemite phase. Ge excess was found to be beneficial to the densification and dielectric properties optimization of Zn2Ge1+xO4+2x. A composition with x = 0.1 (Zn2Ge1.1O4.2) exhibited the optimum microwave dielectric properties with a relative permittivity εr ~ 7.09, a quality factor Q × f ~ 112,700 GHz (at 14.48 GHz), and a temperature coefficient of resonance frequency τf ~ − 51 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  2. X.Q. Song, K. Du, J. Li, X.K. Lan, W.Z. Lu, X.H. Wang, W. Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45, 279–286 (2019)

    Article  Google Scholar 

  3. C.C. Li, C.Z. Yin, J.Q. Chen, H.C. Xiang, Y. Tang, L. Fang, Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J. Eur. Ceram. Soc. 38, 5246–5251 (2018)

    Article  Google Scholar 

  4. Z.Y. Zou, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, P. Fu, W. Lei, Novel high Curie temperature Ba2ZnSi2O7 ferroelectrics with low-permittivity microwave dielectric properties. Ceram. Int. 42, 16387–16391 (2016)

    Article  Google Scholar 

  5. X.Q. Song, K. Du, X.Z. Zhang, J. Li, W.Z. Lu, X.C. Wang, W. Lei, Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys Compd. 750, 996–1002 (2018)

    Article  Google Scholar 

  6. H.C. Xiang, L. Fang, W.S. Fang, Y. Tang, C.C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017)

    Article  Google Scholar 

  7. D. Chen, F. Luo, D. Zhu, Dielectric and microwave absorption properties of divalent-doped Na3Zr2Si2PO12 ceramics. J. Eur. Ceram. Soc. 38, 4440–4445 (2018)

    Article  Google Scholar 

  8. C.C. Li, Z.H. Wei, H. Luo, L. Fang, Sintering behavior and microwave dielectric properties of LiMVO4 (M = Mg, Zn). J. Mater. Sci.: Mater. Electron. 26, 9117–9121 (2015)

    Google Scholar 

  9. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, BiVO4 based high k microwave dielectric materials: a review. J. Mater. Chem. C. 6, 9290–9313 (2018)

    Article  Google Scholar 

  10. C.C. Li, H.C. Xiang, M.Y. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): two novel low permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38, 1524–1528 (2018)

    Article  Google Scholar 

  11. J. Sugihara, K. Kakimoto, I. Kagomiya, H. Ohsato, Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. J. Eur. Ceram. Soc. 27, 3105–3108 (2007)

    Article  Google Scholar 

  12. N.H. Nguyen, J.B. Lim, S. Nahm, Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4, ceramics. J. Am. Ceram. Soc. 90, 3127–3130 (2007)

    Article  Google Scholar 

  13. C.X. Chen, S.P. Wu, Y.X. Fan, Synthesis and microwave dielectric properties of B2O3-doped Mg2GeO4 ceramics. J. Alloys Compd. 578, 153–156 (2013)

    Article  Google Scholar 

  14. S.P. Wu, Q. Ma, Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics. J. Alloys Compd. 567, 40–46 (2013)

    Article  Google Scholar 

  15. Y.J. Eoh, E.S. Kim, High quality factor of (Zn0.6Mg0.4)1.918Ge3.918 microwave dielectrics. Ceram. Int. 41, S537–S543 (2015)

    Article  Google Scholar 

  16. B. Ma, F. Wen, H. Jiang, J. Yang, P. Ying, C. Li, The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting. Catal. Lett. 134, 78–86 (2010)

    Article  Google Scholar 

  17. X.H. Ma, S.H. Kweona, M. Imb, S. Nahm, Low-temperature sintering and microwave dielectric properties of B2O3-added ZnO-deficient Zn2GeO4 ceramics for advanced substrate application. J. Eur. Ceram. Soc. 38, 4682–4688 (2018)

    Article  Google Scholar 

  18. Q.S. Cao, W.Z. Lu, Z.Y. Zou, G.F. Fan, M. Fu, W. Lei, Phase compositions and reaction models of zinc manganese oxides with different Zn/Mn ratios. J. Alloys Compd. 661, 196–200 (2016)

    Article  Google Scholar 

  19. V.B.R. Boppana, N.D. Hould, R.F. Lobo, Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials. J. Solid State Chem. 184, 1054–1062 (2011)

    Article  Google Scholar 

  20. Y.X. Huang, Q.X. Cao, Z.M. Li, H.Q. Jiang, Y.P. Wang, G.F. Li, Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders. J. Am. Ceram. Soc. 92, 2129–2131 (2009)

    Article  Google Scholar 

  21. Y.X. Zhao, S.W. Yang, J. Zhu, G.F. Ji, F. Peng, The study of oxygen ion motion in Zn2GeO4 by Raman spectroscopy. Solid State Ion. 274, 12–16 (2015)

    Article  Google Scholar 

  22. S.K. Sharma, A.K. Misra, B. Sharma, Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim. Acta A 61, 2404–2412 (2005)

    Article  Google Scholar 

  23. O. Yamaguchi, J. Hidaka, K. Hirota, Formation and characterization of alkoxy-derived Zn2GeO4. J. Mater. Sci. Lett. 10, 1471–1474 (1991)

    Article  Google Scholar 

  24. S.L. Zhang, F.M. Zeng, X.T. Wang, C. Li, C.W. Wang, Y. Zhang, H. Lin, J.M. Qin, J.H. Liu, Growth and structure characterization of Cr4+ doped Ca2GeO4 laser crystal. Acta Phys Sin. 59, 7214–7218 (2010)

    Google Scholar 

  25. C.W. Zheng, X.C. Fan, X.M. Chen, Analysis of infrared reflection spectra of (Mg1-xZnx)Al2O4 microwave dielectric ceramics. J. Am. Ceram. Soc. 91, 490–493 (2008)

    Article  Google Scholar 

  26. R. Jeanloz, Infrared spectra of olivine polymorphs: α, β phase and spinel. Phys. Chem. Miner. 5, 327–341 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant Nos. 21965009, 51502047, and 21761008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant Nos. 2015GXNSFFA139003, 2016GXNSFBA380134, 2016GXNSFAA380018, and 2018GXNSFAA138175), and Project of Scientific Research and Technical Exploitation Program of Guilin (Grant No. 20170225). The authors would also like to thank the administrators in the IR beamline workstation of National Synchrotron Radiation Laboratory (NSRL) for their help in the IR measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Tang or Liang Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Tang, Y., Chen, J. et al. Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (− 0.1 ≤ x ≤ 0.2). J Mater Sci: Mater Electron 30, 16651–16658 (2019). https://doi.org/10.1007/s10854-019-02044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02044-y

Navigation