Skip to main content
Log in

Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of new generation 5G communication technology, the demands for the ceramic/polymer dielectric composites with ultra-low dielectric constant and low coefficient of thermal expansion become imperative. In order to reduce the dielectric constant of the composites, the air with the lowest dielectric constant is introduced into the composites. In this study, the hollow silica microspheres (HSM) used as the fillers are introduced in polytetrafluoroethylene (PTFE) matrix to fabricate HSM/PTFE composites, and the effect of HSM on the structure, dielectric properties, and thermal properties of the composites have been investigated. The dielectric constant and CTE of the composites gradually decrease as the fillers increases, and HSM/PTFE composites with filler content of 40 vol% exhibit the excellent properties (ε ≈ 1.94,, tanδ ≈ 0.83 × 10−3) at high frequency (≥ 10 GHz) and lower coefficient of thermal expansion (CTE ≈ 95 ppm/°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Y. Yifei, Z. Longming, Chin. Commun. 11, 69–79 (2014)

    Article  Google Scholar 

  2. R. Gao, A. Gu, G. Liang, S. Dai, L. Yuan, J. Appl. Polym. Sci. 121, 1675–1684 (2011)

    Article  CAS  Google Scholar 

  3. Z. Lou, Q. Wang, X. Zhou et al., J. Mater. Sci. Technol. 113, 33–39 (2022)

    Article  Google Scholar 

  4. I.S. Tsai, Y.-C. Kuo, J. Ind. Text. 40, 261–280 (2010)

    Article  Google Scholar 

  5. J. Sheng, H. Chen, B. Li, Y. Wang, J. Appl. Polym. Sci. 128, 2402–2407 (2013)

    Article  CAS  Google Scholar 

  6. C. Pan, K. Kou, Y. Zhang et al., Mater. Sci. Eng. 238, 61–70 (2018)

    Article  Google Scholar 

  7. C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, J. Mater. Sci. Mater. Electron. 27, 286–292 (2015)

    Article  Google Scholar 

  8. Y. Yuan, J. Yang, B. Tan, B. Tang, E. Li, S. Zhang, J. Mater. Sci. Mater. Electron. 28, 6015–6021 (2017)

    Article  CAS  Google Scholar 

  9. A. Miyase, S. Qu, K.H. Lo, S.S. Wang, J. Eng. Mater. Technol. 142, 1–32 (2020)

    Article  Google Scholar 

  10. S.I. Huang, T.H. Chen, H. Chen, J. Reinf. Plast. Compos. 25, 1053–1058 (2006)

    Article  CAS  Google Scholar 

  11. J. Zimmermann-Ptacek, M. Muggli, S. Wildhack et al., J. Appl. Polym. Sci. 135, 46859 (2018)

    Article  Google Scholar 

  12. C. Cazan, A. Enesca, L. Andronic, Polymers (Basel) 13, 2017 (2021)

    Article  CAS  Google Scholar 

  13. Y. Yuan, S.R. Zhang, X.H. Zhou, E.Z. Li, Mater. Chem. Phys. 141, 175–179 (2013)

    Article  CAS  Google Scholar 

  14. S. Jin, X. Qiu, B. Huang, L. Wang, Q. Zhang, Z. Fu, J. Mater. Sci. Mater. Electron. 27, 8378–8783 (2016)

    Article  CAS  Google Scholar 

  15. T. Apeldorn, C. Keilholz, F. Wolff-Fabris, V. Altstädt, J. Appl. Polym. Sci. 128, 3758–3770 (2013)

    Article  CAS  Google Scholar 

  16. X. Wei, C. Zhao, J. Ma et al., RSC Adv. 6, 1870–1876 (2016)

    Article  CAS  Google Scholar 

  17. Z. Lou, Q. Wang, Y. Zhang et al., Composite B 214, 108744 (2021)

    Article  CAS  Google Scholar 

  18. H. Peng, H. Ren, M. Dang, Y. Zhang, X. Yao, H. Lin, Ceram. Int. 44, 16556–16560 (2018)

    Article  CAS  Google Scholar 

  19. A. Rybak, Polymers (Basel) 13, 2161 (2021)

    Article  CAS  Google Scholar 

  20. D. Zhuo, A. Gu, G. Liang, J. Hu, L. Yuan, J. Mater. Sci. 46, 1571–1580 (2010)

    Article  Google Scholar 

  21. Z. Hong, W. Dongyang, F. Yong et al., Mater. Sci. Eng. B 203, 13–18 (2016)

    Article  CAS  Google Scholar 

  22. Y. Yuan, Y. Yin, D. Yu et al., J. Mater. Sci. Mater. Electron. 28, 3356–3363 (2016)

    Article  Google Scholar 

  23. P.K. Mahato, S. Sen, J. Mater. Sci. Mater. Electron. 26, 2969–2976 (2015)

    Article  CAS  Google Scholar 

  24. Y. Feng, Y. Dai, J. Sun et al., Mater. Res. Express. 5, 026302 (2018)

    Article  Google Scholar 

  25. H. Wang, F. Zhou, J. Guo, H. Yang, J. Tong, Q. Zhang, Ceram. Int. 46, 7531–7540 (2020)

    Article  CAS  Google Scholar 

  26. Y.C. Chen, H.C. Lin, Y.D. Lee, J. Polym. Res. 11, 1–7 (2004)

    Article  Google Scholar 

  27. F. Luo, B. Tang, Z. Fang et al., Ceram. Int. 45, 20458–20464 (2019)

    Article  CAS  Google Scholar 

  28. K.K. Han, J. Zhou, Q. Li et al., J. Mater. Sci. Mater. Electron. 31, 9196–9202 (2020)

    Article  CAS  Google Scholar 

  29. Y. Yuan, Y.R. Cui, K.T. Wu, Q.Q. Huang, S.R. Zhang, J. Polym. Res. 21, 1–6 (2014)

    Article  Google Scholar 

  30. Y.H. Zhang, S.G. Lu, Y.Q. Li et al., Adv. Mater. 17, 1056–1059 (2005)

    Article  CAS  Google Scholar 

  31. A.V. Ievlev, S. Kc, R.K. Vasudevan et al., Nat. Commun. 10, 1–8 (2019)

    Article  CAS  Google Scholar 

  32. R. Gupta, S. Shinde, A. Yella, C. Subramaniam, S.K. Saha, Energy 194, 116921 (2020)

    Article  CAS  Google Scholar 

  33. L. Zheng, J. Zhou, J. Shen, Y.Y. Qi, W. Chen, Chin. Chem. Lett. 30, 1111–1114 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51572205), the Foundation Strengthening Program Key Basic Research Project (Grant No. 2019-JCJQZD-291).

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. 51572205) and the Foundation Strengthening Program Key Basic Research Project (Grant No. 2019-JCJQZD-291).

Author information

Authors and Affiliations

Authors

Contributions

YL has done the fabrication of the composites and the writing of the manuscript. JZ, JS, and QL have been involved in characterizations and compiling of the manuscript. YQ and WC have helped in experiments and improving the overall quality of the manuscript.

Corresponding author

Correspondence to Yanyuan Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 826 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, J., Shen, J. et al. Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application. J Mater Sci: Mater Electron 33, 10096–10103 (2022). https://doi.org/10.1007/s10854-022-07999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07999-z

Navigation