Skip to main content
Log in

Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel kind of hollow silica tube (HST)/cyanate ester (CE) hybrid with high thermal, mechanical, and dielectric properties for high-frequency copper-clad laminates (CCLs) was successfully developed. The curing behavior, the chemical structure of cured networks, and typical performance of HST/CE hybrids were systematically evaluated and compared with that of CE resin. Results disclose that the addition of HST into CE resin can obviously not only catalyze the curing of CE, but also change the chemical structure of resultant networks, and thus result in significantly improved mechanical, thermal, and dielectric properties. The hybrid with 0.7 wt% HST exhibits very good toughness; its impact strength is about 2.2 times of that of CE resin. The outstanding integrated properties show that HST/CE hybrids can be used as high performance structural and functional materials, especially high-frequency CCLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chung WWC, Leung SWF (2005) Prod Plan Control 16:563

    Article  Google Scholar 

  2. Duann YF, Chen BL, Tsai TH (2005) J Appl Polym Sci 95:1485

    Article  CAS  Google Scholar 

  3. Lin HT, Lin CH, Hu YM, Su WC (2009) Polymer 50:5685

    Article  CAS  Google Scholar 

  4. Takahashi A, Satsu Y, Nagai A, Umino M, Nakamura Y (2005) IEEE Trans Electron Packag Manuf 28:163

    Article  CAS  Google Scholar 

  5. Fang T, Shimp DA (1995) Prog Polym Sci 20:61

    Article  CAS  Google Scholar 

  6. Ganesan A, Muthusamy S (2008) J Polym Res 15:507

    Article  Google Scholar 

  7. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Horn BV, Guan ZB, Chen GH, Krishnan RS (2006) Science 311:1740

    Article  CAS  Google Scholar 

  8. Vaia RA, Maguire JF (2007) Chem Mater 19:2736

    Article  CAS  Google Scholar 

  9. Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S (2005) Macromol Rapid Commun 26:1445

    Article  CAS  Google Scholar 

  10. Zhu Y, Sun DX, Zheng H, Wei M, Zhang LM (2007) J Mater Sci 42:545. doi:10.1007/s10853-006-1066-8

    Article  CAS  Google Scholar 

  11. Vendamme R, Onoue SY, Nako A, Kunitake T (2006) Nat Mater 5:494

    Article  CAS  Google Scholar 

  12. Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI (2007) Nano Lett 7:1178

    Article  CAS  Google Scholar 

  13. Zhang YH, Lu SG, Li YQ, Dang ZM, John HX, Fu SY, Li GT, Guo RR, Li LF (2005) Adv Mater 17:1056

    Article  CAS  Google Scholar 

  14. Zhang YH, Li YQ, Li GT, Huang HT, Chan HLW, Walid AD, John HX, Li LF (2007) Chem Mater 19:1939

    Article  CAS  Google Scholar 

  15. Fu SY, Zheng B (2008) Chem Mater 20:1090

    Article  CAS  Google Scholar 

  16. Jiang LY, Leu CM, Wei KH (2002) Adv Mater 14:426

    Article  CAS  Google Scholar 

  17. Yu N, Zhang ZH, He SY (2008) Mat Sci Eng A 494:380

    Article  Google Scholar 

  18. Fang ZP, Wang JH, Gu AJ (2006) Polym Eng Sci 46:670

    Article  CAS  Google Scholar 

  19. Liang KW, Li GZ, Toghiani H, Koo JH, Pittman CU (2006) Chem Mater 18:301

    Article  CAS  Google Scholar 

  20. Fumiaki M, Sean AD, Jonathon PHC, Stephen M (1999) Chem Mater 11:3021

    Article  Google Scholar 

  21. Krysztafkiewicz A, Rager B, Jesionowski T (1997) J Mater Sci 32:1333. doi:10.1023/A:1018564808810

    Article  CAS  Google Scholar 

  22. Zeng MF, Sun XD, Wang Y, Zhang MZ, Shen YM, Wang BY, Qi CZ (2008) Polym Adv Technol 19:1664

    CAS  Google Scholar 

  23. Barton JM, Hamerton I, Jones JR (1993) Polym Int 31:95

    Article  CAS  Google Scholar 

  24. Pan YZ, Xu Y, An L, Lu HB, Yang YL, Chen W, Nutt S (2008) Macromolecular 41:9245

    Article  CAS  Google Scholar 

  25. Henry CYK, Dai J, Tan E, Liang WR (2006) J Appl Polym Sci 101:1775

    Article  Google Scholar 

  26. Lin RH, Lu WH, Lin CW (2004) Polymer 45:4423

    Article  CAS  Google Scholar 

  27. Iijima T, Katsurayama S, Fukuda W, Tomoi M (2000) J Appl Polym Sci 76:208

    Article  CAS  Google Scholar 

  28. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) J Am Chem Soc 123:11420

    Article  CAS  Google Scholar 

  29. Lin CH (2004) Polymer 45:7911

    Article  CAS  Google Scholar 

  30. Song HC (1985) Polymer composites, 1st edn. Beijing University of Aeronautics & Astronautics Press, Beijing

    Google Scholar 

  31. An L, Pan YZ, Shen XW, Lu HB, Yang YL (2008) J Mater Chem 18:4928

    Article  CAS  Google Scholar 

  32. Garboczi EJ, Snyder KA, Douglas JF (1995) Phys Rev E 52:819

    Article  CAS  Google Scholar 

  33. Wooster TJ, Abrol S, Hey JM, Macfarlane DR (2004) Compos Part A 35:75

    Article  Google Scholar 

  34. Wooster TJ, Abrol S, Macfarlane DR (2005) Polymer 46:8011

    Article  CAS  Google Scholar 

  35. Bussu G, Lazzeri A (2006) J Mater Sci 41:6072. doi:10.1007/s10853-006-0694-3

    Article  CAS  Google Scholar 

  36. Matsuoka S (1992) Relaxation phenomena in polymers. Spring Verlag, Munich

    Google Scholar 

  37. Anthony SM, Granick S (2009) Langmuir 25:8152

    Article  CAS  Google Scholar 

  38. Ree M, Yoon J, Heo K (2006) J Mater Chem 16:685

    Article  CAS  Google Scholar 

  39. Li QX, Simon SL (2008) Macromolecules 41:1310

    Article  CAS  Google Scholar 

  40. Han CF, Gu AJ, Liang GZ, Yuan L (2010) Compos Part A 41:1321

    Article  Google Scholar 

  41. Burnside SD, Giannelis EP (2000) J Polym Sci B 38:1595

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation of China (20974076), China Postdoctoral Science Foundation (20080440165), “Qin Lan Project” (2008) and “Six Talent Peaks” (2008) of Jiangsu Province for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Gu or Guozheng Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, D., Gu, A., Liang, G. et al. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates. J Mater Sci 46, 1571–1580 (2011). https://doi.org/10.1007/s10853-010-4964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4964-8

Keywords

Navigation