Skip to main content
Log in

Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrTiO3/PTFE composites with high dielectric constant and low loss properties were prepared via powder processing technique. The structure, morphology, dielectric and thermal properties of the composites were characterized by X-ray diffraction, scanning electron microscope, coefficient of thermal expansion, and network analyzer. SrTiO3/PTFE composites with 60 wt% SrTiO3 are of high εr and high Q: εr = 12.19, Q × f = 1930 GHz. Additionally, theoretical models like Logarithmic mixture rule, Maxwell–Garnet, Effective medium theory and Smith’s model were also used to predict the dielectric constant of these composites. The values obtained by the EMT model are in well agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Yuan, S.R. Zhang, Mater. Chem. Phys. 141, 175–179 (2013). doi:10.1016/j.matchemphys.2013.04.043

    Article  Google Scholar 

  2. B.-H. Fan, J.-W. Zha, D. Wang, J. Zhao, Z.-M. Dang, Appl. Phys. Lett. 100, 012903 (2012). doi:10.1063/1.3673555

    Article  Google Scholar 

  3. K.-T. Wu, Y. Yuan, Shu-Ren Zhang, Xiang-Yu. Yan, Y.-R. Cui, J. Polym. Res. 20, 223 (2013). doi:10.1007/s10965-013-0223-4

    Article  Google Scholar 

  4. E.-Q. Huang, Z.-M. Dang, J. Appl. Phys. 115, 194102 (2014). doi:10.1063/1.4876748

    Article  Google Scholar 

  5. Y. Hu, Y. Zhang, H. Liu, Ceram. Int. 37, 1609–1613 (2011). doi:10.1016/j.ceramint.2011.01.039

    Article  Google Scholar 

  6. R.K. Goyal, K.A. Rokade, Electron. Mater. Lett. 9, 95–100 (2013). doi:10.1007/s13391-012-2107-x

    Article  Google Scholar 

  7. F. Xiang, H. Wang, X. Yao, J. Eur. Ceram. Soc. 27, 3093–3097 (2007). doi:10.1016/j.jeurceramsoc.2006.11.034

    Article  Google Scholar 

  8. K. Lakshmi, H. John, R. Joseph, K.T. Mathew, K.E. George, J. Appl. Polym. Sci. 124, 254–5259 (2012). doi:10.1002/app.34270

    Google Scholar 

  9. P. Tsotra, K. Friedrich, J. Mater. Sci. 40, 4415–4417 (2005). doi:10.1007/s10853-005-3830-6

    Article  Google Scholar 

  10. N.K. James, S. Rajesh, K.P. Murali, K.S. Jacob, R. Ratheesh, J. Mater. Sci.: Mater. Electron. 21, 1255–1261 (2010). doi:10.1007/s10854-010-0058-2

    Google Scholar 

  11. Y. You, Y. Yuan, K.-T. Wu, J. Mater. Sci.: Mater. Electron. 25, 3010–3015 (2014). doi:10.1007/s10854-014-1975-2

    Google Scholar 

  12. Y-l Su, C. Sun, W-q Zhang, H. Huang, J. Mater. Sci. 48, 8147–8152 (2013). doi:10.1007/s10853-013-7627-8

    Article  Google Scholar 

  13. P.S. Anjana, S. Uma, J. Philip, M.T. Sebastian, J. Appl. Polym. Sci. 118, 751–758 (2010). doi:10.1111/j.1744-7402.2008.02228.x

    Google Scholar 

  14. G. Ma, X. Yue, S. Zhang, Polym. Eng. Sci. 51, 1051–1058 (2011). doi:10.1002/pen.21925

    Article  Google Scholar 

  15. Y. Xiangyu, Y. Yin, Piezoelectr. Acoustoopt. 36, 270–274 (2014)

    Google Scholar 

  16. S. Rajesh, K.P. Murali, Int J Appl. Ceram. Technol. 6, 553–561 (2009). doi:10.1111/j.1744-7402.2009.02389.x

    Article  Google Scholar 

  17. P.J. Rae, B.M. Datebaum, Polymer 45, 7615–7625 (2004)

    Article  Google Scholar 

  18. X.G. Huang, J. Zhang, M. Lai, T.Y. Sang, J. Alloys Compd. 627, 367–373 (2015)

    Article  Google Scholar 

  19. X.G. Huang, J. Zhang, S.R. Xiao, G.S. Chen, J. Am. Ceram. Soc. 97, 1363–1366 (2014)

    Article  Google Scholar 

  20. P.S. Anjana, M.T. Sebastian, Int. J. Appl. Ceram. Technol. 5, 325–333 (2008). doi:10.1111/j.1744-7402.2008.02228.x

    Article  Google Scholar 

  21. V.S. Nisa, S. Rajesh, K.P. Murali, Compos. Sci. Technol. 68, 106–112 (2008). doi:10.1016/j.compscitech.2007.05.024

    Article  Google Scholar 

  22. K.M. Manu, S. Soni, V.R.K. Murthy, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 24, 2098–2105 (2013). doi:10.1007/s10854-013-1064-y

    Google Scholar 

  23. Y. Rao, J. Qu, T. Marinis, C.P. Wong, I.E.E.E. Trans, Compon. Pack. Technol. 23, 680–683 (2000). doi:10.1109/6144.888853

    Article  Google Scholar 

  24. A.H. Shivola, J.A. Kong, I.E.E.E. Trans, Geosci. Remote 26, 420–429 (1988). doi:10.1109/36.3045

    Article  Google Scholar 

  25. G. Subodh, C. Pavithran, P. Mohanan, M.T. Sebastian, J. Eur, Ceram. Soc. 27, 3039–3044 (2007). doi:10.1016/j.jeurceramsoc.2006.11.049

    Article  Google Scholar 

  26. K.P. Murali, S. Rajesh, O. Prakash, Compos. Part A Appl. Sci. 40, 1179–1185 (2009). doi:10.1016/j.compositesa.2009.05.007

    Article  Google Scholar 

  27. F. Xiang, H. Wang, J. Eur. Ceram. Soc. 26, 1999–2002 (2006). doi:10.1016/j.jeurceramsoc.2005.09.048

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Projects of Guangdong Province (Project No. 2011A091103002), College Industrialization Project of Jiangsu Province (JHB2012-12), Jiangsu Collaborative Innovation Center for Advanced Inorganic Punction Composites and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Wang, L., Wang, Z. et al. Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications. J Mater Sci: Mater Electron 26, 7431–7437 (2015). https://doi.org/10.1007/s10854-015-3374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3374-8

Keywords

Navigation