Skip to main content
Log in

Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing polymer dielectrics with a low dielectric loss but high dielectric permittivity (ε′) and breakdown strength (Eb) is constantly pursued for applications in microelectronics and electrical industries. In this work, nickel (Ni) powders were coated by a layer of insulating aluminum oxide (Al2O3) via a facile sol–gel process, and the obtained core–shell Ni@Al2O3 particles were admixed into poly(vinylidene fluoride) (PVDF) to study the impacts of the Al2O3 shell and its thickness on dielectric properties of the composites. The results verify the formation of the insulating Al2O3 layer on the surface of the Ni core, which obviously enhances interfacial compatibility and interactions between the matrix and the fillers. The Ni@Al2O3/PVDF composites show better dielectric performances compared with the pristine Ni/PVDF. The dramatically suppressed dielectric loss and conductivity can be attributed to the insulating Al2O3 interlayer avoiding the Ni cores from direct contact with each other and blocking the long-range migration of electrons. Furthermore, the Al2O3 shell serves as an interlayer which lessens the distortion and concentration of local electric field subsequently leading to enhanced Eb. Thus, the dielectric properties of the Ni@Al2O3/PVDF composites can be effectively tuned through finely tailoring the Al2O3 shell’s thickness. The developed Ni@Al2O3/PVDF composites with high Eb and ε′ but low dielectric loss have potential applications in the microelectronic and electrical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Y. Feng, Y.H. Zhou, T.D. Zhang, C.H. Zhang, Y.Q. Zhang, Y. Zhang, Q.G. Chen, Q.G. Chi, Energy Storage Mater. 25, 180–192 (2020)

    Article  Google Scholar 

  2. B. Li, M.X. Yuan, S.H. Zhang, R. Rajagopalan, M.T. Lanagan, Appl. Phys. Lett. 113(19), 193903 (2018)

    Article  CAS  Google Scholar 

  3. J.W. Zha, S.C. Yao, Y. Qiu, M.H. Zheng, Z.M. Dang, IET Nanodielectr. 2(3), 103–108 (2019)

    Article  Google Scholar 

  4. X.G. Zhou, J.J. Yang, Z.L. Gu, Y.H. Wei, G.C. Li, C.C. Hao, Q.Q. Lei, Adv. Eng. Mater. 23(7), 2100008 (2021)

    Article  CAS  Google Scholar 

  5. Z.D. Wang, G.D. Meng, L.L. Wang, L.L. Tian, S.Y. Chen, G.L. Wu, B. Kong Bo, Y.H. Cheng, Sci. Rep. 11(1), 1–11 (2021)

    Article  CAS  Google Scholar 

  6. M.X. Yuan, G. Zhang, B. Li, T.C.M. Chung, R. Rajagopalan, M.T. Lanagan, A.C.S. Appl, Mater. Interfaces 12(12), 14154–14164 (2020)

    Article  CAS  Google Scholar 

  7. P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, Q. Xie, Chin. J. Chem. 39(5), 1153–1158 (2021)

    Article  CAS  Google Scholar 

  8. L.H. Zhao, C.J. Liao, Y. Liu, X.L. Huang, W.J. Ning, Z. Wang, L.C. Jia, J.W. Ren, Compos. Interface 14, 1–17 (2021)

    CAS  Google Scholar 

  9. L.H. Zhao, L. Yan, C.G. Wei, Q.H. Li, X.L. Huang, Z.L. Wang, M.L. Fu, J.W. Ren, J. Phys. Chem. C 124(23), 12723–12733 (2020)

    Article  CAS  Google Scholar 

  10. W.M. Xia, J.H. Zhou, T.L. Hu, P.G. Ren, G.J. Zhu, Y.L. Yin, J.L. Li, Z.C. Zhang, Composites A 131, 105805 (2020)

    Article  CAS  Google Scholar 

  11. B.H. Fan, X.X. Lu, Z.M. Dang, Y. Deng, X.Y. Zhou, D.L. He, J.B. Bai, J. Appl. Polym. Sci. 135(3), 45693 (2018)

    Article  CAS  Google Scholar 

  12. X.W. Liang, X.C. Yu, L. Lv, T. Zhao, S.B. Luo, S.H. Yu, R. Sun, C.-P. Wong, P.L. Zhu, Nano Energy 68, 104351 (2020)

    Article  CAS  Google Scholar 

  13. Y. Yang, H.L. Sun, D. Yin, Z.H. Lu, J.H. Wei, R. Xiong, J. Shi, Z.Y. Wang, Z.Y. Liu, Q.Q. Lei, J. Mater. Chem. A 3(9), 4916–4921 (2015)

    Article  CAS  Google Scholar 

  14. L.M. Yao, Z.B. Pan, J.W. Zha, G.Z. Zhang, Z.Y. Liu, Y.H. Liu, Composites A 109, 48–54 (2018)

    Article  CAS  Google Scholar 

  15. L.C. Jia, Y.F. Jin, J.W. Ren, L.H. Zhao, D.X. Yan, Z.M. Li, J. Mater. Chem. C 9(8), 2904–2911 (2021)

    Article  CAS  Google Scholar 

  16. Z.D. Wang, X.Z. Wang, S.L. Wang, J.Y. He, T. Zhang, J. Wang, G.L. Wu, Nanomaterials 11(8), 1898 (2021)

    Article  CAS  Google Scholar 

  17. M. Yuan, B. Li, S. Zhang, R. Rajagopalan, M.T. Lanagan, A.C.S. Appl, Polym. Mater. 2(3), 1356–1368 (2020)

    CAS  Google Scholar 

  18. H. Luo, X.F. Zhou, C. Ellingford, Y. Zhang, S. Chen, H.C. Zhou, D. Zhang, C.R. Bowen, C.Y. Wan, Chem. Soc. Rev. 48(16), 4424–4465 (2019)

    Article  CAS  Google Scholar 

  19. J.W. Ren, Q.H. Li, L. Yan, L.H. Jia, X.H. Huang, L.H. Zhao, Q.H. Ran, M.L. Fu, Mater. Des. 191, 108663 (2020)

    Article  CAS  Google Scholar 

  20. B. Li, F. Salcedo-Galan, P.I. Xidas, E. Manias, ACS Appl. Nanomater. 1(9), 4401–4407 (2018)

    Article  CAS  Google Scholar 

  21. B. Li, P.I. Xidas, E. Manias, ACS Appl. Nanomater. 1(7), 3520–3530 (2018)

    Article  CAS  Google Scholar 

  22. B. Li, P.I. Xidas, K.S. Triantafyllidis, E. Manias, Appl. Phys. Lett. 111(8), 082906 (2017)

    Article  CAS  Google Scholar 

  23. O.P. Kum, N. Chanlekb, B. Putasaengc, P. Thongbaia, Ceram. Int. 46(11), 17272–17279 (2020)

    Article  CAS  Google Scholar 

  24. T. Li, W.Y. Zhou, Y. Li, D. Cao, Y. Wang, G.Z. Cao, X.R. Liu, H.W. Cai, Z.M. Dang, J. Mater. Sci. Mater. Electron. 32, 4076–4089 (2021)

    Article  CAS  Google Scholar 

  25. W.Y. Zhou, L.N. Dong, X.Z. Sui, Z.J. Wang, J. Zuo, H.W. Cai, Q.G. Chen, J. Polym. Res. 23(3), 45 (2016)

    Article  CAS  Google Scholar 

  26. F. Zhang, W.Y. Zhou, C.H. Zhang, Y. Li, C. Liang, X. Li, G.H. Wang, H.W. Cai, Z.M. Dang, Polym. Plast. Technol. Mater. 60(6), 680–693 (2021)

    Google Scholar 

  27. X. Lu, W. Deng, J.D. Wei, Y.S. Zhu, P.R. Ren, Y.H. Wan, F.X. Yan, L. Jin, L. Zhang, Z.Y. Cheng, J. Mater. Sci. 56(36), 19983–19998 (2021)

    Article  CAS  Google Scholar 

  28. H. Luo, C. Ma, X.F. Zhou, S. Chen, D. Zhang, Macromolecules 50(13), 5132–5137 (2017)

    Article  CAS  Google Scholar 

  29. X. Lu, X.W. Zou, J.L. Shen, L. Zhang, L. Jin, Z.Y. Cheng, Nano Energy 70, 104551 (2020)

    Article  CAS  Google Scholar 

  30. X. Lu, L. Zhang, Y. Tong, Z.Y. Cheng, Composites B 168, 34–43 (2019)

    Article  CAS  Google Scholar 

  31. J.Y. Pei, S.L. Zhong, Y. Zhao, L.J. Yin, Q.K. Feng, L. Huang, Y.X. Zhang, Z.M. Dang, Energy Environ. Sci. 14(6), 5513–5522 (2021)

    Article  CAS  Google Scholar 

  32. Y.J. Kou, W.Y. Zhou, X. Li, Z.J. Wang, Y. Li, H.W. Cai, D.F. Liu, F.X. Chen, G.H. Wang, Z.M. Dang, Polym. Plast. Technol. Mater. 59(6), 592–605 (2020)

    CAS  Google Scholar 

  33. W.Y. Zhou, Y. Gong, L.Y. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J. Alloys Compd. 693, 1–8 (2017)

    Article  CAS  Google Scholar 

  34. W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai, Z. Li, F.X. Chen, X.R. Liu, G.H. Wang, Q.G. Chen, Z.M. Dang, Compos. Sci. Technol. 181, 107686 (2019)

    Article  CAS  Google Scholar 

  35. W.Y. Zhou, F. Zhang, M.X. Yuan, B. Li, J.D. Peng, Y.Q. Lv, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, J. Mater. Sci. Mater. Electron. 30(20), 18350–18361 (2019)

    Article  CAS  Google Scholar 

  36. Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4(1), 65–68 (2012)

    Article  CAS  Google Scholar 

  37. D. Cao, W.Y. Zhou, T. Li, L.T. Tu, B. Li, G.Z. Cao, Y. Wang, D.F. Liu, G.H. Wang, H.W. Cai, J. Polym. Res. 28(7), 1–12 (2021)

    Article  CAS  Google Scholar 

  38. H.Y. Ban, Y.Z. Fan, X. Zhao, A. Du, R.N. Ma, K.X. Chen, X.M. Cao, X. Li, Mater. Chem. Phys. 241, 122376 (2020)

    Article  CAS  Google Scholar 

  39. L. Xu, W.Y. Zhou, B. Li, Y.J. Kou, H.W. Cai, F.X. Chen, G.H. Wang, D.F. Liu, Z.M. Dang, J. Elastomers Plast. 52(4), 304–321 (2020)

    Article  CAS  Google Scholar 

  40. J.C. Ma, U. Azhar, C.Y. Zong, Y.B. Zhang, A.H. Xu, C.C. Zhai, L.Q. Zhang, S.X. Zhang, Mater. Des. 164, 107556 (2019)

    Article  CAS  Google Scholar 

  41. W.Y. Li, Z.Q. Song, J.M. Zhong, J. Qian, Z.Y. Tan, X.Y. Wu, H.Y. Chu, W. Nie, X.H. Ran, J. Mater. Chem. C 7(33), 10371–10378 (2019)

    Article  CAS  Google Scholar 

  42. Y. Wu, X.Y. Lin, X. Shen, X.Y. Sun, X. Liu, Z.Y. Wang, J.K. Kim, Carbon 89, 102–112 (2015)

    Article  CAS  Google Scholar 

  43. Y.B. Shen, S.B. Luo, S.H. Yu, R. Sun, C.P. Wong, ICEPT ( IEEE, 2016), pp. 361–364

  44. W.Y. Zhou, T. Li, M.X. Yuan, B. Li, S.L. Zhong, Z. Li, X.R. Liu, J.J. Zhou, Y. Wang, H.W. Cai, Z.M. Dang, Energy Storage Mater. 42, 1–11 (2021)

    Article  Google Scholar 

  45. D.K. Cheng, H. Wang, B. Liu, S. Wang, Y. Li, Y.S. Xia, C.X. Xiong, J. Appl. Polym. Sci. 136(39), 47991 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51937007, 51903207); Priority Research and Development Foundations of Shaanxi Provincial Government (2021GY-215); PhD Early Development Program of Xi’an University of Science and Technology (2019QDJ010), and has received research support from the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WZ, YL, and PL. Characterization and related discussion were performed by TY, JL, JZ, and JC. Funding acquisition and Project administration were performed by WZ, YL. The first draft of the manuscript was written by GC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenying Zhou or Ying Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. Authors are responsible for correctness of the statements provided in the manuscript. See also Authorship Principles. The Editor-in-Chief reserves the right to reject submissions that do not meet the guidelines described in this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Zhou, W., Li, Y. et al. Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer. J Mater Sci: Mater Electron 33, 9951–9965 (2022). https://doi.org/10.1007/s10854-022-07987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07987-3

Navigation