Skip to main content

Advertisement

Log in

Ni-doped MnCo2O4 nanoparticles as electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mn1-xNixCo2O4 (0.00 ≤ x ≤ 0.20) nanoparticles were synthesized by a simple PAN-solution route. XRD, TEM, SAED, FESEM, XANES, XPS, and BET techniques were used to investigate the structural and morphology of Ni-doped MnCo2O4 nanoparticles. The effect of Ni ions substitution in MnCo2O4 nanoparticles on the electrochemical properties was examined on three-electrode systems. The results show that the substitution of Mn with Ni ions can improve the electrochemical properties of MnCo2O4 nanoparticles. The Mn1-xNixCo2O4 electrode with x = 0.15 exhibits the highest specific capacitance of 378 F g−1 at the current density of 1 A g−1. After 1000 charge-discharges times, this electrode has good capacity retention of 85%. The good capacitance characteristics and cyclic stability indicate that these Mn1-0.85Ni0.15Co2O4 nanoparticles could be applied as active materials for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. J.R. Miller, A. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 53 (2008). https://doi.org/10.1149/2.f08081if

    Article  CAS  Google Scholar 

  2. Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155, 706 (2019). https://doi.org/10.1016/j.carbon.2019.09.018

    Article  CAS  Google Scholar 

  3. K. Karthikeyan, D. Kalpana, N. Renganathan, Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15, 107 (2009). https://doi.org/10.1007/s11581-008-0227-y

    Article  CAS  Google Scholar 

  4. T. Huang, C. Zhao, R. Zheng, Y. Zhang, Z. Hu, Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics 21, 3109 (2015). https://doi.org/10.1007/s11581-015-1491-2

    Article  CAS  Google Scholar 

  5. C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 169, 202 (2015). https://doi.org/10.1016/j.electacta.2015.04.079

    Article  CAS  Google Scholar 

  6. W. Fu, X. Li, C. Zhao, Y. Liu, P. Zhang, J. Zhou, X. Pan, E. Xie, Facile hydrothermal synthesis of flowerlike ZnCo2O4 microspheres as binder-free electrodes for supercapacitors. Mater. Lett. 149, 1 (2015). https://doi.org/10.1016/j.matlet.2015.02.092

    Article  CAS  Google Scholar 

  7. M. Dai, D. Zhao, H. Liu, X. Zhu, X. Wu, B. Wang, Nanohybridization of Ni–Co–S nanosheets with ZnCo2O4 nanowires as supercapacitor electrodes with long cycling stabilities. ACS Appl. Energy Mater. 4, 2637–2643 (2021). https://doi.org/10.1021/acsaem.0c03204

    Article  CAS  Google Scholar 

  8. M. Dai, H. Liu, D. Zhao, X. Zhu, A. Umar, H. Algarni, X. Wu, Ni foam substrates modified with a ZnCo2O4 nanowire-coated Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Energy Mater. 4, 5461–5468 (2021). https://doi.org/10.1021/acsanm.1c00825

    Article  CAS  Google Scholar 

  9. H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram. Int. 42, 2416 (2016). https://doi.org/10.1016/j.ceramint.2015.10.041

    Article  CAS  Google Scholar 

  10. H. Che, Y. Wang, Y. Mao, Novel flower-like MnCo2O4 microstructure self-assembled by ultrathin nanoflakes on the microspheres for high-performance supercapacitors. J. Alloys Compd. 680, 586 (2016). https://doi.org/10.1016/j.jallcom.2016.04.116

    Article  CAS  Google Scholar 

  11. Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2, 16480 (2014). https://doi.org/10.1039/C4TA03123G

    Article  CAS  Google Scholar 

  12. Y. Bai, R. Wang, X. Lu, J. Sun, L. Gao, Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors. J. Colloid Interface Sci. 468, 1 (2016). https://doi.org/10.1016/j.jcis.2016.01.020

    Article  CAS  Google Scholar 

  13. R.K. Gupta, J. Candler, S. Palchoudhury, K. Ramasamy, B.K. Gupta, Flexible and high performance supercapacitors based on NiCo2O4 for wide temperature range applications. Sci. Rep. 5, 15265 (2015). https://doi.org/10.1038/srep15265

    Article  CAS  Google Scholar 

  14. S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699 (2016). https://doi.org/10.1038/srep22699

    Article  CAS  Google Scholar 

  15. T. Kim, A. Ramadoss, B. Saravanakumar, G.K. Veerasubramani, S.J. Kim, Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors. Appl. Surf. Sci. 370, 452 (2016). https://doi.org/10.1016/j.apsusc.2016.02.147

    Article  CAS  Google Scholar 

  16. D.S. Sun, Y.H. Li, Z.Y. Wang, X.P. Cheng, S. Jaffer, Y.F. Zhang, Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors. J. Mater. Chem. A 4, 5198 (2016). https://doi.org/10.1039/C6TA00928J

    Article  CAS  Google Scholar 

  17. R.B. Waghmode, A.P. Torane, Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors. Mater. Sci. - Mater. Electron. 27, 6133 (2016). https://doi.org/10.1007/s10854-016-4540-3

    Article  CAS  Google Scholar 

  18. Z. Wang, X. Zhang, Z. Zhang, N. Qiao, Y. Li, Z. Hao, Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors. J. Colloid Interface Sci. 460, 303 (2015). https://doi.org/10.1016/j.jcis.2015.08.067

    Article  CAS  Google Scholar 

  19. K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical MnO2 nanosheets on electrospun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors. J. Alloys Compd. 678, 120 (2016). https://doi.org/10.1016/j.jallcom.2016.03.255

    Article  CAS  Google Scholar 

  20. C. Zheng, C. Cao, R. Chang, J. Hou, H. Zhai, Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys. Chem. Chem. Phys. 18, 6268 (2016). https://doi.org/10.1039/C5CP07997G

    Article  CAS  Google Scholar 

  21. D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu, D. Xue, X. Wu, J. Liu, Sulfur-induced interface engineering of Hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces. 6, 1901308 (2019). https://doi.org/10.1002/admi.201901308

    Article  CAS  Google Scholar 

  22. D. Zhao, M. Dai, Y. Zhao, H. Liu, Y. Liu, X. Wu, Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation. Nano Energy 72, 104715 (2020). https://doi.org/10.1016/j.nanoen.2020.104715

    Article  CAS  Google Scholar 

  23. M. S. Tamboli, D. P. Dubal, S. S. Patil, A. F. Shaikh, V. G. Deonikar, M. V. Kulkarni, N. N. Maldar, Inamuddin, A. M. Asiri, P. Gomez-Romero, B. B. Kale, D. R. Patil (2017) Mimics of microstructures of Ni substituted Mn1−xNixCo2O4 for high energy density asymmetric capacitors. Chem. Eng. J. 307, 300. https://doi.org/10.1016/j.cej.2016.08.086

  24. H. Mu, X. Su, Z. Zhao, C. Han, Z. Wang, P. Zhao, Facile synthesis of Ni0.5Mn0.5Co2O4 nanoflowers as high-performance electrode material for supercapacitors. J. Am. Ceram. Soc. 102, 6893 (2019). https://doi.org/10.1111/jace.16610

    Article  CAS  Google Scholar 

  25. O. Kalawa, P. Kidkhunthod, N. Chanlek, J. Khajonrit, S. Maensiri, Synthesis and electrochemical properties of polymer solution prepared MnCo2O4 nanoparticles. Ionics 26, 457 (2020). https://doi.org/10.1007/s11581-019-03197-w

    Article  CAS  Google Scholar 

  26. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  27. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  28. W. Ali, V. Shabani, M. Linke, S. Sayin, B. Gebert, S. Altinpinar, M. Hildebrandt, Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM. J Gutmann T Mayer-Gall. RSC Adv. 9, 4553 (2019). https://doi.org/10.1039/C8RA04594A

    Article  CAS  Google Scholar 

  29. H. Liu, D. Zhao, Y. Liu, Y. Tong, X. Wu, G. Shen, NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 64, 581–591 (2021). https://doi.org/10.1007/s40843-020-1442-3

    Article  CAS  Google Scholar 

  30. G. Li, L. Xu, Y. Zhai, Y. Hou, Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J. Mater. Chem. A 3, 14298 (2015). https://doi.org/10.1039/C5TA03145A

    Article  CAS  Google Scholar 

  31. S. Wang, Y. Hou, X. Wang, Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 7, 4327 (2015). https://doi.org/10.1021/am508766s

    Article  CAS  Google Scholar 

  32. A.N. Naveen, S. Selladurai, A 1-D/2-D hybrid nanostructured manganese cobaltite-graphene nanocomposite for electrochemical energy storage. RSC Adv. 5, 65139 (2015). https://doi.org/10.1039/C5RA09288D

    Article  CAS  Google Scholar 

  33. M. Wang, K. Chen, J. Liu, Q. He, G. Li, F. Li, Efficiently enhancing electrocatalytic activity of α-MnO2 nanorods/N-doped ketjenblack carbon for oxygen reduction reaction and oxygen evolution reaction using facile regulated hydrothermal treatment. Catalysts 8, 138 (2018). https://doi.org/10.3390/catal8040138

    Article  CAS  Google Scholar 

  34. G. Han, R. Sui, Y. Yu, L. Wang, M. Li, J. Li, H. Liu, W. Yang, Structure and magnetic properties of the porous Al-substituted barium hexaferrites. J. Magn. Magn. Mater. 528, 167824 (2021). https://doi.org/10.1016/j.jmmm.2021.167824

    Article  CAS  Google Scholar 

  35. Y.L. Cao, F.C. Lv, S.C. Yu, J. Xu, X. Yang, Z.G. Lu, Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries. Nanotechnology 27, 135703 (2016). https://doi.org/10.1088/0957-4484/27/13/135703

    Article  CAS  Google Scholar 

  36. L.B. Kong, C. Lu, M.C. Liu, Y.C. Luo, L. Kang, X. Li, F.C. Walsh, The specific capacitance of sol-gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochim. Acta 115, 22 (2014). https://doi.org/10.1016/j.electacta.2013.10.089

    Article  CAS  Google Scholar 

  37. N. Padmanathan, S. Selladurai, Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 20, 479 (2014). https://doi.org/10.1007/s11581-013-1009-8

    Article  CAS  Google Scholar 

  38. S. Sahoo, K.K. Naik, C.S. Rout, Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology (2015). https://doi.org/10.1088/0957-4484/26/45/455401

    Article  Google Scholar 

  39. S.G. Krishnan, M.H.A. Rahim, R. Jose, Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance psuedocapacitor electrode. J. Alloys Compd. 656, 707 (2016). https://doi.org/10.1016/j.jallcom.2015.10.007

    Article  CAS  Google Scholar 

  40. P. Hao, Z. Zhao, L. Li, C.C. Tuan, H. Li, Y. Sang, H. Jiang, C.P. Wong, H. Liu, The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7, 14401 (2015). https://doi.org/10.1039/C5NR04421A

    Article  CAS  Google Scholar 

  41. S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9, 1945 (2015). https://doi.org/10.1021/nn506851x

    Article  CAS  Google Scholar 

  42. K.N. Hui, K. San Hui, Z. Tang, V. Jadhav, Q.X. Xia, Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J. Power. Sources. 330, 195–203 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.116

    Article  CAS  Google Scholar 

  43. R.B. Waghmode, H.S. Jadhav, K.G. Kanade, A.P. Torane, Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors. Mater. Sci. Technol. 2, 556–564 (2019). https://doi.org/10.1016/j.mset.2019.06.002

    Article  Google Scholar 

  44. L. Li, Z. Dai, Y. Zhang, J. Yang, W. Huang, X. Dong, Carbon@NiCo2S4 nanorods: an excellent electrode material for supercapacitors. RSC Adv. 5, 83408 (2015). https://doi.org/10.1039/C5RA15022A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kalawa, O. would like to thank the Science Achievement Scholarship of Thailand (SAST) and the Synchrotron Radiation and Renewal Energy Research Unit for the unstinting support of her PhD study. The authors sincerely thank the Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand for XANES (BL5.2) and XPS (BL5.3) facilities. This work, the unstinting support from the Science Achievement Scholarship of Thailand (SAST), SUT COE on Advanced Functional Materials, and SUT-NANOTEC RNN on Nanomaterials and Advanced Characterizations, Suranaree University of Technology, Nakhon Ratchasima, Thailand. In addition, this work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science, Research and Innovation Fund (NSRF) (42851).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: Kalawa, O., Sichumsaeng, T., Maensiri, S.; data collection: Kalawa, O., Kidkhunthod, P., Chanlek, N.; analysis and interpretation of results: Kalawa, O., Kidkhunthod, P., Chanlek, N., Maensiri, S.; draft manuscript preparation: Kalawa, O., Sichumsaeng, T., Maensiri, S. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Ornuma Kalawa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalawa, O., Sichumsaeng, T., Kidkhunthod, P. et al. Ni-doped MnCo2O4 nanoparticles as electrode material for supercapacitors. J Mater Sci: Mater Electron 33, 4869–4886 (2022). https://doi.org/10.1007/s10854-021-07677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07677-6

Navigation