Skip to main content
Log in

Low-temperature microwave hydrothermally synthesized Mn-doped NiCo2O4 nanoparticles: enhanced structural and electrochemical properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The energy storage capacity of a material is primarily influenced by its specific capacitance. A series of MnxNi1-xCo2O4 at x = 0.0 – 0.10 with Δx = 0.02 was prepared using the low-temperature microwave hydrothermal (M-H) method at 160 °C, and the synthesised samples were sintered at 750 °C for 4 h. The samples were characterised by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) analysis. It is observed from X-ray diffraction that all the samples have a cubic topology belonging to the space group Fd-3m, and the average lattice constant varies from 8.049 to 8.074. The average grain size of all samples is in the range of 96 nm to 326 nm. The valence states of Mn2+, Mn3+, Ni2+, Ni3+, Co2+, and Co3+ were confirmed by X-ray photoelectron spectroscopy. The electrochemical studies using CV, GCD, and EIS were performed on all the samples. A high specific capacitance (Csp) of 490 F g−1 and high energy density and power density were reported for Mn0.06Ni0.94Co2O4, showing good electrochemical properties that are useful for supercapacitor applications.

Graphical Abstract

Highlights

  • Series of MnNCO synthesized by Microwave hydrothermal method.

  • The average grain size is in the range of 96–326 nm.

  • The highest Porosity of 31.17 nm is found for sample Mn0.06Ni0.94Co2O4.

  • Higher pore size ensures more specific capacitance for the sample, x = 0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the analysis and the current studies are available from the corresponding author upon reasonable request.

References

  1. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Lett 10:4025–4031. https://doi.org/10.1021/nl1019672

    Article  CAS  PubMed  Google Scholar 

  2. Park S, Jayaraman S (2011) Smart Textiles: Wearable Electronics Systems. MRS Bull 28:585–591. https://doi.org/10.1557/mrs2003.170

    Article  Google Scholar 

  3. Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronics yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157. https://doi.org/10.1021/nl801495p

    Article  CAS  PubMed  Google Scholar 

  4. Abruña HD, Kiya Y, Henderson JC (2008) Batteries and electrochemical capacitors. Phys Today 61:43–47. https://doi.org/10.1063/1.3047681

    Article  CAS  Google Scholar 

  5. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  6. Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y et al. (2012) Paper-Based Supercapacitors for Self-Powered Nanosystems. Angew Chem Int Ed 51:4934–4938. https://doi.org/10.1002/anie.201109142

    Article  CAS  Google Scholar 

  7. Yang C, Dong L, Chen Z, Lu H (2014) High-performance All-Solid-State Supercapacitor Based on the Assembly of Graphene and Manganese (II) Phosphate Nanosheets. J Phys Chem C 118:18884–18891. https://doi.org/10.1021/jp504741u

    Article  CAS  Google Scholar 

  8. H Wang, Q Gao, L Jiang (2011) Facile approach to prepare Nickel Cobaltite Nanowires Materials for Supercapacitors. Small 2454–2459. https://doi.org/10.1002/smll.201100534.

  9. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide- driven Sol-Gel process. Adv Mater 22:347–351. https://doi.org/10.1002/adma.200902175

    Article  CAS  PubMed  Google Scholar 

  10. Yunyun F, Xu L, Wankun Z, Yuxuan Z, Yunhan Y, Honglin Q, Xuetang X, Fan W (2015) Spinel CoMn2O4 nanosheets arrays grown on nickel foam for high-performance supercapacitor electrode. Appl Surf Sci 357:2013–2021. https://doi.org/10.1016/j.apsusc.2015.09.176

    Article  CAS  Google Scholar 

  11. Liu C, Jiang W, Hu F, Wu X, Xue D (2018) Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode material with excellent cycling stabilities. Inorg Chem Front 5:835–843. https://doi.org/10.1039/C8QI00010G

    Article  CAS  Google Scholar 

  12. Li Y, Han X, Yi T, He Y, Li X (2019) Review and Prospect of NiCo2O4 - based composite materials for supercapacitor electrode. J Energy Chem 31:54–78. https://doi.org/10.1016/j.jechem.2018.05.010

    Article  Google Scholar 

  13. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudo capacitors. RSC Adv 1:588–595. https://doi.org/10.1039/C1RA00342A

    Article  CAS  Google Scholar 

  14. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emergimg material for supercapacitors:An overview. Nano Energy 11:377–399. https://doi.org/10.1016/J.NANOEN.2014.11.013

    Article  CAS  Google Scholar 

  15. Wu X, Han Z, Zheng X, Yao S, Yang X, Zhai T (2017) Core-shell structured Co3O4 – NiCo2O4 electrode grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417. 10.1016%2Fj.nanoen.2016.11.035.

    Article  CAS  Google Scholar 

  16. Li Y, Han X, Yi T, He Y, Li X (2019) Review and prospect of NiCo2O4 based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78. https://doi.org/10.1016/j.jechem.2018.05.010

    Article  Google Scholar 

  17. Zhang J, Liu F, Cheng J, Zhang X (2015) Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature. ACS Appl Mater Interfaces 7:17630–17640. https://doi.org/10.1021/acsami.5b04463

    Article  CAS  PubMed  Google Scholar 

  18. Huang YY, Lin L-Y (2018) Synthesis of Ternary Metal Oxides for Battery- Supercapacitor Hybrid Devices: Influences of Metal Species on Redox reaction and Electrical Conductivity. ACS Applied Energy. Materials 1:2979–2990. https://doi.org/10.1021/acsaem.8b00781

    Article  CAS  Google Scholar 

  19. Yuan Y, Long D, Li Z, Zhu J (2019) Fe substitution in urchin-like NiCo2O4 foe energy storage devices. RSC Adv 9:7210–7217. https://doi.org/10.1039/C8RA10586C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu L, Zhang H, Fang L, Mu Y, Wang Y (2016) Facile preparation of novel dandelion- like Fe doped NiCo2O4 microspheres nanomeshes for excellent capacitive property in asymmetric supercapacitors. J Power Sources 327:135–144. https://doi.org/10.1016/j.jpowsour.2016.07.054

    Article  CAS  Google Scholar 

  21. Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211. https://doi.org/10.1016/j.apsusc.2017.06.313

    Article  CAS  Google Scholar 

  22. Chang S-K, Zainal Z, Tan K-B, Yusof NA, Yusoff WMDW (2015) Synthesis and electrtochemical properties of nanostructured nickel- cobalt oxides as supercapacitor electrodes in aqueous media. Int J Energy Res 39:1366–1377. https://doi.org/10.1002/er.3339

    Article  CAS  Google Scholar 

  23. Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Heirarchical mesoporous NiCo2O4 – MnO2 core-shell nanowires arrays on nickel foam for aqueous asymmetrical supercapacitors. J Mater Chem A 2(13):4795–4802. https://doi.org/10.1039/C3TA14647B

    Article  CAS  Google Scholar 

  24. Siwatch P, Sharma K, Manyani N, Tripathi SK (2020) Electrochemical performance of nickel cobalt oxide-reduced graphene oxide- polyvinyl alcohol nanocomposite. AIP Conf Proc 2220:020055–020059. https://doi.org/10.1063/5.0001838

    Article  CAS  Google Scholar 

  25. Belova K, Egorova A, Pachina V, Animitsa I (2022) Crystal structure, electrical conductivity and Hydration of the Novel Oxygen – Deficient Perovskite La2ScZnO5.5 Doped with MgO and CaO. Appl Sci 12:1181. https://doi.org/10.3390/app12031181

    Article  CAS  Google Scholar 

  26. Maramu N, Ravinder D, Anil Babu T, Srinivas M, Ravinder Reddy B, Sriramulu G, Sadhana K, Krishna Prasad NV (2021) Structural and microwave properties of Ag- doped strontium hexa ferrite. J Mater Sci: Mater Elect 2:23854–23862. https://doi.org/10.1007/s10854-021-06797-3

    Article  CAS  Google Scholar 

  27. Karmakar S, Varma S, Behera D (2018) Investigation of structural and electrical transport properties of nan- flower shaped NiCo2O4 supercapacitor electrode materials. J Alloy Compd 757:49–59. https://doi.org/10.1016/j.jallcom.2018.05.056

    Article  CAS  Google Scholar 

  28. Karmakar S, Panda B, Sahoo B, Krutika, Routray L, Varme S, Behera D (2018) A Study om Optical and Dielectric properties of Ni- Zn nanocomposite. Mater Sci Semiconductor Process 88:198–206. https://doi.org/10.1016/j.mssp.2018.08.008

    Article  CAS  Google Scholar 

  29. Karmakar S, Beher D (2019) Small Polaron hoping conduction in NiMnO3/NiMn2O4 nano-cotton and its emerging energy application with MWCNT. Ceram Int 45:13052–13066. https://doi.org/10.1016/j.ceramint.2019.03.237

    Article  CAS  Google Scholar 

  30. Suwanboon S, Amornpitoksuk P, Sukolrat A (2011) Dependenace of optical properties on doping metal, crystallite size and defect concentration of M- doped ZnO nanoparticles (M=Al, Mg, Ti). Ceram Int 37:1359–1365. https://doi.org/10.1016/j.ceramint.2010.12.010

    Article  CAS  Google Scholar 

  31. Qi WH, Wang MP (2005) Size and shape dependent lattice parameters of metallic nanoparticles. J Nanopart Res 7:51–57. https://link.springer.com/article/10.1007/s11051-004-7771-9

    Article  CAS  Google Scholar 

  32. Raveendran R, Chitra PG (2008) Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles. Ind J Eng Mater Sci 15:489–496. https://www.researchgate.net/publication/242613358

  33. Mylarappa M, Venkata Lakshmi V, Vishnu Mahesh KR, Nagaswarupa HP, Raghavendra N (2016) A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environment applications. IOP Conf Ser: Mater Sci Eng 149:012178. https://doi.org/10.1088/1757-899X/149/1/012178

    Article  Google Scholar 

  34. Rajasekar K, Vonod G, Maesh Kumar K, Laxman Naik J (2022) Impact of erbium (Er) doping on the structural and magnetic properties of Ni-Cu (Ni0.1Cu0.9Fe2O4) nanoparticles. J Magn Magn Mater 555:169323. https://doi.org/10.1016/j.jmmm.2022.169323

    Article  CAS  Google Scholar 

  35. Liu Y, Gu YJ, Deng JL, Luo GY, Wu FZ, Mai Y, Dai XY, Li JQ (2020) Effect of doped Mn on improving the electrochemical performance of LiFe2O4. J Mater Sci: Mater Electron 31:2887–2894. https://doi.org/10.1007/s10854-019-02833-5

    Article  CAS  Google Scholar 

  36. Liao F, Han X, Zhang Y, Xu C, Chen H (2018) Solvothermal synthesis of porous MnCo2O4.5 spindle-like microstructures as high-performance electrode materials for supercapacitors. Ceram Int 44:22622–22631. https://doi.org/10.1016/j.ceramint.2018.09.038

    Article  CAS  Google Scholar 

  37. Dolla TH, Pruessner K, Billing DG, Sheppard C, Prinsloo A, Carleschi E et al. (2018) Sol-gel synthesis of MnxNi1-xCo2O4 spinel materials: Structural, electronic, and magnetic properties. J Alloy Compd 742:78–89. https://doi.org/10.1016/j.jallcom.2018.01.139

    Article  CAS  Google Scholar 

  38. Butreddy P, Holden H, Rathnayake H (2022) Metal Ion-directed Coordination programming of Biomolecules to Bioinspired Nano flowers. Macromol Chem Phys 223:2200237–2200243. https://doi.org/10.1002/macp.202200237

    Article  CAS  Google Scholar 

  39. Roshani R, Tadjarodi A (2020) Synthesis of ZnFe2O4 nanoparticles with high specific surface area for high- performance supercapaciots. J Mater Sci Mater Electron 31:23025–23036. https://doi.org/10.1007/s10854-020-04830-5

    Article  CAS  Google Scholar 

  40. Karmakar S, Boddhula R, Sahoo B, Raviteja B (2019) Electrochemical performance of heterogeneous, mesopores and non-centrosymmetric core shell NiCo2O4-MnO2 nanocomposites and its MWCNT blended complex for supercapacitor applications. J Solid State Chem 280:121013. https://doi.org/10.1016/j.jssc.2019.121013

    Article  CAS  Google Scholar 

  41. Karmakara S, Mistari CD, Vaidyanathanc A, More MA, Chakraborty B, Beheraa D (2021) Comparison of electrochemical response and electric field emission characteristics of pristine La2NiO4 and La2NiO4/CNT composites: Origin of multi- functionality with theoretical penetration by density functional theory. Electrochim Acta 369:137676. https://doi.org/10.1016/j.electacta.2020.137676

    Article  CAS  Google Scholar 

  42. Rastabi SA, Mamoory RS, Razaz G, Blomquist N, Hummelgard M, Olin H (2021) Treatment of NiMoO4 - nanographite nanocomposite electrodes using flexible graphite substrate for aqueous hybrid supercapacitors. Plos One 16:0254023–0254033. https://doi.org/10.1371/journal.pone.0254023

    Article  CAS  Google Scholar 

  43. Maheshwaram S, Gaddameedi S, Chidurala SCH, Katlakunta S, Mudutanapalli VN, Daripally S, Butreddy R (2023) Structural and electrochemical properties of Cu doped NiCo2O4 prepared by microwave hydrothermal method. Mater Lett 348:134650. https://doi.org/10.1016/j.matlet.2023.134650

    Article  CAS  Google Scholar 

  44. Chowdhury A, Mandal D, Biswas S, Dubey BK, Chandra A (2022) Role of porosity and diffusion coefficient in porous electrode used in supercapacitors - Correlating theoretical and experimental studies. Electrochem Sci Adv 25:e2100159. https://doi.org/10.1002/elsa.202100159

    Article  CAS  Google Scholar 

  45. Razzaghi F (2017) The effect of morphology on the electrochemical properties of nanostructured metal oxide thin films: the studies based on multi-scale time-resolved fast electrogravimetric techniques HAL open science: 27. https://theses.hal.science/tel-01477408.

  46. Toghan A, Khairy M, Kamar EM, Mousa MA (2022) Effect of particle size and morphological structure on the physical properties of NiFe2O4 for super capacitor application. J Mater Res Technol 19:3521–3533. https://doi.org/10.1016/j.jmrt.2022.06.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. M. Srinivas, Head, Department of Physics, Osmania University, for his constant encouragement.

Author contributions

All the authors contributed to the conception and design of the study. NS and BB prepared materials and collected data; data analyses were performed by BRR, and BL, the original draft was prepared by BRR; the review of the manuscript was done by SK, and the experimental methodology was designed by ChSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Reddy Butreddy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelam, S., Koneti, B.b., Chidurala, S.c. et al. Low-temperature microwave hydrothermally synthesized Mn-doped NiCo2O4 nanoparticles: enhanced structural and electrochemical properties. J Sol-Gel Sci Technol 110, 246–255 (2024). https://doi.org/10.1007/s10971-024-06345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06345-5

Keywords

Navigation