Skip to main content
Log in

Comment on the relationship between electrical and optical conductivity used in several recent papers published in the journal of materials science: materials in electronics

  • Letter to the Editor
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently a series of papers have been published in the Journal of Materials Science: Materials in Electronics and also in other journals in which a relationship of the form \({\sigma }_{\text{el} }=2knc/\alpha\), \({\sigma }_{\text{el} }=2\lambda {\sigma }_{\text{op} }/\alpha\) and \({\sigma }_{\text{el} }=\lambda {nc }/({2{\pi}})\) (where λ is the free-space wavelength of light c is the speed of light in vacuum) between the electrical conductivity σel and optical conductivity σ1op. The  refractive index n, absorption coefficient α and the extinction coefficient k have been used and conclusions have been drawn from these relationships, including graphs of electrical and optical conductivity as a function of photon energy over a very wide range (e.g., 1–5.6 eV). In this comment, the difference between the optical (\({\sigma }_{\text{op}})\) and electrical (\({\sigma }_{\text{el}}\)) conductivities is considered and analyzed through well-known textbook considerations; correct relations are given, and it is shown that the above expressions that have recently appeared in the literature are incorrect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Suriya, M. Manimaran, B.M. Boaz, K.S. Murugesan, Investigation on the optical, spectral, electrical, mechanical, and laser damage threshold studies of bis (4-acetylanilinium) tetrachloridozincate (B4ATCZ) crystal. J. Mater. Sci. 32, 11393 (2021). https://doi.org/10.1007/s10854-021-05265-2

    Article  CAS  Google Scholar 

  2. D. Abila Darling, S.E. Joema, Investigation of structural, mechanical, optical, thermal and in vitro antimicrobial study of l-phenylalaninium formate single crystals. J. Mater. Sci. 32, 9087 (2021). https://doi.org/10.1007/s10854-021-05577-3

    Article  CAS  Google Scholar 

  3. J. Henry, G. Sivakumar, R. Vettumperumal, T.S.S. Subramanian, K. Mohanraj, Optical and photovoltaic properties of vacuum-evaporated CZTSe, CAZTSe, and AZTSe thin films: a comparative study. J. Mater. Sci. 32, 20259 (2021). https://doi.org/10.1007/s10854-021-06529-7

    Article  CAS  Google Scholar 

  4. A.S. Abouhaswa, I.O. Olarinoye, N.V. Kudrevatykh, E.M. Ahmed, Y.S. Rammah, Bi2O3 reinforced B2O3 + Sb2O3 + Li2O: composition, physical, linear optical characteristics, and photon attenuation capacity. J. Mater. Sci. 32, 12439 (2021). https://doi.org/10.1007/s10854-021-05875-w

    Article  CAS  Google Scholar 

  5. Z.K. Heiba, M.B. Mohamed, N.M. Farag, S.I. Ahmed, Structure and optical properties of Zn and Mn co-doped nano-NiFe2O4. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06757-x

    Article  Google Scholar 

  6. A.K. Bhunia, S.S. Pradhan, K. Bhunia, A.K. Pradhan, S. Saha, Study of the optical properties and frequency-dependent electrical modulus spectrum to the analysis of electric relaxation and conductivity effect in zinc oxide nanoparticles. J. Mater. Sci.. (2021). https://doi.org/10.1007/s10854-021-06742-4

    Article  Google Scholar 

  7. P. Jayaprakash, M.L. Caroline, S. Sudha et al., Synthesis, growth, optical and third order nonlinear optical properties of l-Phenylalanine d-Mandelic acid single crystal for photonic device applications. J. Mater. Sci. 31, 20460 (2020). https://doi.org/10.1007/s10854-020-04565-3

    Article  CAS  Google Scholar 

  8. R. Priya, S. Anitha, P.S.L. Mageshwari, R. Ragu, Exploration on transport process of optically active third-order nonlinear disodium succinate hexahydrate (β phase) single crystals encompassing self-focusing nature. J. Mater. Sci. 31, 21288 (2020). https://doi.org/10.1007/s10854-020-04641-8

    Article  CAS  Google Scholar 

  9. G. Rajasekar, M.K. Dhatchaiyini, P. Rekha, S. Sudhahar, G. Vinitha, A. Bhaskaran, Investigation on linear and nonlinear optical properties of third-order nonlinear optical semi-organic material: ammonium bis (citrato) borate dihydrate. J. Mater. Sci. 31, 18732 (2020). https://doi.org/10.1007/s10854-020-04414-3

    Article  CAS  Google Scholar 

  10. T. Suresh, S. Vetrivel, S. Gopinath, E. Vinoth, Investigation on synthesis, laser damage threshold, and NLO properties of l-asparagine thioacetamide single crystal for photonic device applications. J. Mater. Sci. 31, 13310 (2020). https://doi.org/10.1007/s10854-020-03884-9

    Article  CAS  Google Scholar 

  11. K.D. Babu, P. Philominathan, K. Murali, Third-order optical nonlinearities of spray deposited l-glutamic acid thin films using Z-scan and f-scan. J. Mater. Sci. 31, 17351 (2020). https://doi.org/10.1007/s10854-020-04291-w

    Article  CAS  Google Scholar 

  12. H.Y.S. Al-Zahrani, Synthesis, optical and optoelectrical analysis of the Cu2CoSnS4 thin films as absorber layer for thin-film solar cells. J. Mater. Sci. 31, 6900 (2020). https://doi.org/10.1007/s10854-020-03252-7

    Article  CAS  Google Scholar 

  13. K.R. Gbashi, A.K. Hussein, Cu-doped ZnS coatings for optoelectronics with enhanced protection for UV radiations. J. Mater. Sci. 31, 17258 (2020). https://doi.org/10.1007/s10854-020-04280-z

    Article  CAS  Google Scholar 

  14. IM El Radaf, Structural, optoelectrical, linear, and nonlinear optical characterizations of the Cu2ZnGeSe4 thin films. J. Mater. Sci. 31, 3228 (2020). https://doi.org/10.1007/s10854-020-02871-4

    Article  CAS  Google Scholar 

  15. R. Indrakanti, V. Brahmaji Rao, C. Udaya Kiran, Optical parameters of gallium nitride doped ferrite–polypyrrole nanocomposites. J. Mater. Sci. 31, 3238 (2020). https://doi.org/10.1007/s10854-020-02872-3

    Article  CAS  Google Scholar 

  16. Z.K. Heiba, M.M. Ghannam, M.M.S. Sanad, A.A. Albassam, M.B. Mohamed, Structural, optical, and dielectric properties of nano-ZnMn2−xVxO4. J. Mater. Sci. 31, 8946 (2020). https://doi.org/10.1007/s10854-020-03429-0

    Article  CAS  Google Scholar 

  17. T.A. Taha, A.S. Abouhaswa, Preparation and optical properties of borate glass doped with MnO2. J. Mater. Sci. 29, 8100 (2018). https://doi.org/10.1007/s10854-018-8816-7

    Article  CAS  Google Scholar 

  18. H.I. Elsaeedy, Growth, structure, optical and optoelectrical characterizations of the Cu2NiSnS4 thin films synthesized by spray pyrolysis technique. J. Mater. Sci. 30, 12545 (2019). https://doi.org/10.1007/s10854-019-01615-3

    Article  CAS  Google Scholar 

  19. D. Kanimozhi, R. Indirajith, Effects of optical and dielectric properties of l-cysteine doped tris thiourea zinc sulphate single crystals. J. Mater. Sci. 30, 8526 (2019). https://doi.org/10.1007/s10854-019-01173-8

    Article  CAS  Google Scholar 

  20. K. Sudhakar, P. Arulmozhichelvan, T. Arumanayagam, P. Murugakoothan, Unveiling photophysical-chemical properties of ethylenediamine ditartrate dihydrate acentric single crystal: a proficient material for nonlinear optical application. J. Mater. Sci. 30, 11257 (2019). https://doi.org/10.1007/s10854-019-01472-0

    Article  CAS  Google Scholar 

  21. I.M. El Radaf, H.Y.S. Al-Zahrani, A.S. Hassanien, Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu2MnGeS4 thin films. J. Mater. Sci. 31, 8336 (2020). https://doi.org/10.1007/s10854-020-03369-9

    Article  CAS  Google Scholar 

  22. D. Bharath, S. Kalainathan, D. Anbuselvi, Studies on thermal nonlinear optical effects on cyclododecanone crystals for IR optical switching application. J. Mater. Sci. 29, 20615 (2018). https://doi.org/10.1007/s10854-018-0199-2

    Article  CAS  Google Scholar 

  23. R.M. Hassan, S. Moustafa, A.M. Abd-Elnaiem, Optimization of the linear and nonlinear optical properties of amorphous As30Te69Ga1 thin films by the annealing process. J. Mater. Sci. 31, 20043 (2020). https://doi.org/10.1007/s10854-020-04526-w

    Article  CAS  Google Scholar 

  24. A.M. Abd-Elnaiem, R.M. Hassan, H.R. Alamri, H.S. Assaedi, Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content. J. Mater. Sci. 31, 13204 (2020). https://doi.org/10.1007/s10854-020-03872-z

    Article  CAS  Google Scholar 

  25. A.V. Deepa, P. Vinothkumar, K. Sathya Moorthy et al., Optical, electrical, mechanical properties of Pr3+ and Yb3+ doped phosphate glasses. Opt. Quantum Electron. 52, 483 (2020). https://doi.org/10.1007/s11082-020-02606-z

    Article  CAS  Google Scholar 

  26. C. Ravichandiran, A. Sakthivelu, R. Davidprabu et al., Effect of deposition temperature on key optoelectronic properties of electrodeposited cuprous oxide thin films. Opt. Quantum Electron. 50, 281 (2018). https://doi.org/10.1007/s11082-018-1531-z

    Article  CAS  Google Scholar 

  27. İA. Kariper, Production of cyclo-hafnium metal–organic thin film using a specific method. Opt. Quantum Electron. 51, 18 (2018). https://doi.org/10.1007/s11082-018-1729-0

    Article  CAS  Google Scholar 

  28. A. Sedky, A.M. Ali, M. Mohamed, Structural and optical investigation of pure and Al doped ZnO annealed at different temperatures. Opt. Quantum Electron. 52, 42 (2019). https://doi.org/10.1007/s11082-019-2158-4

    Article  CAS  Google Scholar 

  29. E.A. Abdel Wahab, K.S. Shaaban, E.S. Yousef, Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt. Quantum Electron. 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3

    Article  CAS  Google Scholar 

  30. A. Sedky, A.M. Ali, H.H. Somaily, H. Algarni, Electrical, photoluminescence and optical investigation of ZnO nanoparticles sintered at different temperatures. Opt. Quantum Electron. 53, 243 (2021). https://doi.org/10.1007/s11082-021-02849-4

    Article  CAS  Google Scholar 

  31. A.Z. Mahmoud, M.A. Abdel-Rahim, M. Mohamed, Role of the annealing temperature for optimizing the optical and electronic parameters of Ge10Se75Ag15 films for optoelectronic applications. Opt. Quantum Electron. 53, 236 (2021). https://doi.org/10.1007/s11082-021-02832-z

    Article  CAS  Google Scholar 

  32. A.S. Abouhaswa, Physical properties of anatase TiO2 nanocrystallites: based photoanodes doped with Cr2O3. Opt. Quantum Electron. 52, 144 (2020). https://doi.org/10.1007/s11082-020-02275-y

    Article  CAS  Google Scholar 

  33. M. Aftab, M.Z. Butt, D. Ali, F. Bashir, T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021). https://doi.org/10.1016/j.optmat.2021.111369

    Article  CAS  Google Scholar 

  34. A.M.A. Shamekh, A.Z. Mahmoud, M.A. Abdel-Rahim, Assessment of linear/nonlinear optical constants and dispersion parameters of Se85−xTe15Sbx glasses for photonic applications. Opt. Mater. 114, 111008 (2021). https://doi.org/10.1016/j.optmat.2021.111008

    Article  CAS  Google Scholar 

  35. S. Nandhini, P. Murugakoothan, Synthesis, growth, optical, thermal, electrical and third-order nonlinear properties of an organic single crystal guanidinium 3,5 dinitrosalicylate: a promising candidate for nonlinear optical applications. Opt. Mater. 113, 110714 (2021). https://doi.org/10.1016/j.optmat.2020.110714

    Article  CAS  Google Scholar 

  36. S. Boulahlib, K. Dib, M. Özacar, Y. Bessekhouad, Optical, dielectric, and transport properties of Ag-doped ZnO prepared by Aloe Vera assisted method. Opt. Mater. 113, 110889 (2021). https://doi.org/10.1016/j.optmat.2021.110889

    Article  CAS  Google Scholar 

  37. R.U. Mullai, S.R. Kanuru, R. Arul Jothi, S. Gopinath, S. Vetrivel, Synthesis, growth, thermal, mechanical and optical studies of piperazinium based cupric sulfate (PCS) single crystals: a third order nonlinear optical material. Opt. Mater. 110, 110482 (2020). https://doi.org/10.1016/j.optmat.2020.110482

    Article  CAS  Google Scholar 

  38. D. Alagarasan, S. Varadharajaperumal, K.D.A. Kumar et al., Influence of nanostructured SnS thin films for visible light photo detection. Opt. Mater. 121, 111489 (2021). https://doi.org/10.1016/j.optmat.2021.111489

    Article  CAS  Google Scholar 

  39. R. Gherbi, Y. Bessekhouad, M. Trari, Structure, optical and transport properties of Mg-doped ZnMn2O4. J. Alloys Compd. 655, 188 (2016). https://doi.org/10.1016/j.jallcom.2015.09.192

    Article  CAS  Google Scholar 

  40. A. Alasvand, H. Kafashan, Comprehensive physical studies on nanostructured Zn-doped CdSe thin films. J. Alloys Compd. 789, 108 (2019). https://doi.org/10.1016/j.jallcom.2019.03.096

    Article  CAS  Google Scholar 

  41. S.S. Fouad, I.M. El Radaf, P. Sharma, M.S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 757, 124 (2018). https://doi.org/10.1016/j.jallcom.2018.05.033

    Article  CAS  Google Scholar 

  42. R. Gherbi, Y. Bessekhouad, M. Trari, Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method. J. Phys. Chem. Solids 89, 69 (2016). https://doi.org/10.1016/j.jpcs.2015.10.019

    Article  CAS  Google Scholar 

  43. P.P. Vinaya, A.N. Prabhu, K. Subrahmanya Bhat, V. Upadhyaya, Design, growth and characterization of D-π-A-π-D based efficient nonlinear optical single crystal for optical device applications. J. Phys. Chem. Solids 123, 300 (2018). https://doi.org/10.1016/j.jpcs.2018.08.014

    Article  CAS  Google Scholar 

  44. G. Shankar, P.S. Joseph, M.Y. Suvakin, A. Sebastiyan, Optical reflectance, optical refractive index and optical band gap measurements of nonlinear optics for photonic applications. Opt. Commun. 295, 134 (2013). https://doi.org/10.1016/j.optcom.2013.01.003

    Article  CAS  Google Scholar 

  45. G. Anbazhagan, P.S. Joseph, G. Shankar, Optical reflectance, optical refractive index and optical conductivity measurements of nonlinear optics for l-aspartic acid nickel chloride single crystal. Opt. Commun. 291, 304 (2013). https://doi.org/10.1016/j.optcom.2012.10.073

    Article  CAS  Google Scholar 

  46. K. Subramani, P.S. Joseph, G. Shankar, Optical, electrical and ac conductivity measurements of nonlinear optical Dimethylaminomethylphthalimide doped with cadmium chloride single crystal for nano applications. Opt. Commun. 300, 12 (2013). https://doi.org/10.1016/j.optcom.2013.03.009

    Article  CAS  Google Scholar 

  47. A. Qasem, M. Mahmoud, N.M. Said, F.Y. Rajhi, Extracting the optical parameters of the fabricated (Al/Bare borosilicate crown glass, BK-7/Ag) multiple layers. J. Inorg. Organomet. Polym. Mater. 31, 4326 (2021). https://doi.org/10.1007/s10904-021-02042-w

    Article  CAS  Google Scholar 

  48. Sunaryono, M.F. Hidayat, M.N. Kholifah, et al. Study of nanostructural, electrical, and optical properties of Mn0.6Fe2.4O4–PEG/PVP/PVA ferrogels for optoelectronic applications. J. Inorg. Organomet. Polym. Mater. 30, 4278 (2020). https://doi.org/10.1007/s10904-020-01630-6

  49. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym. Mater. 28, 1114 (2018). https://doi.org/10.1007/s10904-017-0772-9

    Article  CAS  Google Scholar 

  50. N.R. Rajagopalan, P. Krishnamoorthy, Growth and characterization of bis(thiourea) antimony tribromide: a reliable non-linear optical crystal. J. Inorg. Organomet. Polym. Mater. 27, 296 (2017). https://doi.org/10.1007/s10904-016-0472-x

    Article  CAS  Google Scholar 

  51. I.M. El Radaf, H.Y.S. Al-Zahrani, S.S. Fouad, M.S. El-Bana, Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells. Ceram. Int. 46, 18778 (2020). https://doi.org/10.1016/j.ceramint.2020.04.195

    Article  CAS  Google Scholar 

  52. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of BO3 – Bi2O3 – ZnO – CaO glasses. Ceram. Int. 45, 20724 (2019). https://doi.org/10.1016/j.ceramint.2019.07.056

    Article  CAS  Google Scholar 

  53. N. Rukcharoen, A. Tubtimtae, V. Vailikhit, P. Teesetsopon, N. Kitisripanya, Effect of low thermal treatment temperatures on the morphological, optical and electrical properties of Sn1-xMnxTe nanocomposite films incorporated with indium cations. Ceram. Int. 45, 23203 (2019). https://doi.org/10.1016/j.ceramint.2019.08.016

    Article  CAS  Google Scholar 

  54. M. Kladkaew, N. Samranlertrit, V. Vailikhit, P. Teesetsopon, A. Tubtimtae, Effect of annealing process on the properties of undoped and manganese2+-doped co-binary copper telluride and tin telluride thin films. Ceram. Int. 44, 7186 (2018). https://doi.org/10.1016/j.ceramint.2018.01.166

    Article  CAS  Google Scholar 

  55. S.A. Umar, M.K. Halimah, G.G. Ibrahim et al., Oxide ion/electronic polarizability, optical basicity and linear dielectric susceptibility of TeO2 – B2O3 – SiO2 glasses. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.04.180

    Article  Google Scholar 

  56. Z.N. Kayani, S.R. Maria, S. Naseem, Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: influence of Ce contents. Ceram. Int. 46, 381 (2020). https://doi.org/10.1016/j.ceramint.2019.08.272

    Article  CAS  Google Scholar 

  57. K. Rajesh, P. Krishnan, A. Mani, K. Anandan, K. Gayathri, P. Devendran, Physical strength and Opto-electrical conductivity of L-Serine Phosphate single crystal for structural and photonics devices fabrication. Mater. Res. Innov. 24, 295 (2020). https://doi.org/10.1080/14328917.2019.1664178

    Article  CAS  Google Scholar 

  58. M. George, D. Sajan, P. Sankar, R. Philip, Vibrational spectra, linear and nonlinear optical investigations on 3-chloro 4-fluoro aniline and 2-iodo aniline for optical limiting applications. J. Mol. Struct. 1238, 130412 (2021). https://doi.org/10.1016/j.molstruc.2021.130412

    Article  CAS  Google Scholar 

  59. S. Karoui, H. Chouaib, S. Kamoun, Synthesis, X-ray powder diffraction study, thermal analysis, Hirshfeld surface analysis and optical properties of new crystalline polymer: {(C2H10N2)(MnCl(NCS)2)2}n. J. Mol. Struct. 1223, 128993 (2021). https://doi.org/10.1016/j.molstruc.2020.128993

    Article  CAS  Google Scholar 

  60. S. Jeeva, S. Muthu, R. Thomas, B.R. Raajaraman, G. Mani, G. Vinitha, Co-crystals of urea and hexanedioic acid with third-order nonlinear properties: an experimental and theoretical enquiry. J. Mol. Struct. 1202, 127237 (2020). https://doi.org/10.1016/j.molstruc.2019.127237

    Article  CAS  Google Scholar 

  61. R. Msalmi, S. Elleuch, B. Hamdi, R. Zouari, H. Naïli, Synthesis, DFT calculations, intermolecular interactions and third order nonlinear optical properties of new organoammonium tetrabromocadmate (II): (C5H6N2Cl)2[CdBr 4]·H2O. J. Mol. Struct. 1222, 128853 (2020). https://doi.org/10.1016/j.molstruc.2020.128853

    Article  CAS  Google Scholar 

  62. R. Rajkumar, P. Praveen Kumar, Structure, crystal growth and characterization of piperazinium bis(4-nitrobenzoate) dihydrate crystal for nonlinear optics and optical limiting applications. J. Mol. Struct. 1179, 108 (2019). https://doi.org/10.1016/j.molstruc.2018.10.085

    Article  CAS  Google Scholar 

  63. P. Jayaprakash, M.P. Mohamed, M.L. Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine dl-Mandelic acid single crystal. J. Mol. Struct. 1134, 67 (2017). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  CAS  Google Scholar 

  64. M. Peer Mohamed, P. Jayaprakash, M. Nageshwari et al., Crystal growth, structural, spectral, thermal, linear and nonlinear optical characterization of a new organic nonlinear chiral compound: l-tryptophan-fumaric acid-water (1/1/1) suitable for laser frequency conversion. J. Mol. Struct. 1141, 551 (2017). https://doi.org/10.1016/j.molstruc.2017.04.002

    Article  CAS  Google Scholar 

  65. V. Ganesh, M. Shkir, S. AlFaify, I.S. Yahia, H.Y. Zahran, A.F.A. El-Rehim, Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150, 523 (2017). https://doi.org/10.1016/j.molstruc.2017.08.047

    Article  CAS  Google Scholar 

  66. T.C.S. Girisun, S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44, 1297 (2009). https://doi.org/10.1002/crat.200900351

    Article  CAS  Google Scholar 

  67. R. Mohandoss, S. Dhanuskodi, M.S. Jayalakshmy, J. Philip, G. Bhagavannarayana, Structural, electrical, thermal and optical properties of the nonlinear optical crystal L-Arginine Fluoride. Cryst. Res. Technol. 47, 620 (2012). https://doi.org/10.1002/crat.201200014

    Article  CAS  Google Scholar 

  68. B. Uma Maheshwari, V. Senthil Kumar, Influence of annealing on p-type Cu2ZnSnS4 thin film by dip coating solution growth technique for the application of solar cell. J. Modern Opt. 61, 1225 (2014). https://doi.org/10.1080/09500340.2014.928376

    Article  CAS  Google Scholar 

  69. C.R.T. Kumari, P. Jayaprakash, M. Nageshwari, M.P. Mohamed, P. Sangeetha, M.L. Caroline, Growth, optical, photoluminescence, dielectric, second and third order nonlinear optical studies of benzoyl valine acentric crystal. Mol. Cryst. Liquid Cryst. 658, 186 (2017). https://doi.org/10.1080/15421406.2018.1432975

    Article  CAS  Google Scholar 

  70. G. Anbazhagan, P.S. Joseph, G. Shankar, T. Balakrishnan, Optical and electrical conductivity measurements of GLO single crystals for NLO applications. Asian J. Inf. Technol. 11, 36 (2012). https://doi.org/10.3923/ajit.2012.36.39

    Article  Google Scholar 

  71. S. Nandhini, K. Sudhakar, S. Muniyappan, P. Murugakoothan, Systematic discussions on structural, optical, mechanical, electrical and its application to NLO devices of a novel semi-organic single crystal: guanidinium tetrafluoroborate (GFB). Optics Laser Technol. 105, 249 (2018). https://doi.org/10.1016/j.optlastec.2018.03.006

    Article  CAS  Google Scholar 

  72. M. Aslam Manthrammel, A.M. Aboraia, M. Shkir et al., Optical analysis of nanostructured rose bengal thin films using Kramers-Kronig approach: new trend in laser power attenuation. Opt. Laser Technol. 112, 207 (2019). https://doi.org/10.1016/j.optlastec.2018.11.024

    Article  CAS  Google Scholar 

  73. M.M. Shehata, H. Kamal, H.M. Hasheme, M.M. El-Nahass, K. Abdelhady, Optical spectroscopy characterization of zinc tetra pyridel porphine (ZnTPyP) organic thin films. Opt. Laser Technol. 106, 136 (2018). https://doi.org/10.1016/j.optlastec.2018.03.032

    Article  CAS  Google Scholar 

  74. D. Sahoo, P. Priyadarshini, A. Aparimita et al., Optimization of linear and nonlinear optical parameters of As40Se50Te10 thin films by thermal annealing. Opt Laser Technol. 140, 107036 (2021). https://doi.org/10.1016/j.optlastec.2021.107036

    Article  CAS  Google Scholar 

  75. O. Erken, Effect of cycle numbers on the structural, linear and nonlinear optical properties in Fe2O3 thin films deposited by SILAR method. Curr. Appl. Phys. 34, 7 (2022). https://doi.org/10.1016/j.cap.2021.11.009

    Article  Google Scholar 

  76. IM El Radaf, Synthesis and characterizations of p-type kesterite Ag2ZnSnS4 thin films deposited by spray pyrolysis. J. Electron. Mater. 49, 3591 (2020). https://doi.org/10.1007/s11664-020-08063-4

    Article  CAS  Google Scholar 

  77. M. Divya, P. Malliga, P. Sagayaraj, A. Joseph Arul Pragasam, Optical based electrical properties of thiourea borate NLO crystal for electro-optic Q switches. J. Electron. Mater. 48, 5632 (2019). https://doi.org/10.1007/s11664-019-07377-2

    Article  CAS  Google Scholar 

  78. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, R. El-Mallawany, Optical and electrical properties of lead borate glasses. J. Electron. Mater. 48, 5624 (2019). https://doi.org/10.1007/s11664-019-07391-4

    Article  CAS  Google Scholar 

  79. I.M. El Radaf, H.Y.S. Al-Zahrani, Facile synthesis and structural, linear and nonlinear optical investigation of p-type Cu2ZnGeS4 thin films as a potential absorber layer for solar cells. J. Electron. Mater. 49, 4843 (2020). https://doi.org/10.1007/s11664-020-08204-9

    Article  CAS  Google Scholar 

  80. D. Kanimozhi, R. Indirajith, Effects of l-cysteine in Zinc Bis Thiourea Acetate (ZBTA) crystal lattice. J. Electron. Mater. 48, 4706 (2019). https://doi.org/10.1007/s11664-019-07259-7

    Article  CAS  Google Scholar 

  81. S. Suresh, Growth, optical, dielectric and ferroelectric properties of non-linear optical single crystal: glycine-phthalic acid. J. Electron. Mater. 45, 5904 (2016). https://doi.org/10.1007/s11664-016-4798-5

    Article  CAS  Google Scholar 

  82. I.M. El Radaf, S.S. Fouad, A.M. Ismail, G.B. Sakr, Influence of spray time on the optical and electrical properties of CoNi2S4 thin films. Mater. Res. Express 5, 046406 (2018). https://doi.org/10.1088/2053-1591/aaba0a

    Article  CAS  Google Scholar 

  83. R.M. Abdelhameed, I.M. El Radaf, Self-cleaning lanthanum doped cadmium sulfide thin films and linear/nonlinear optical properties. Mater. Res. Express 5, 066402 (2018). https://doi.org/10.1088/2053-1591/aac638

    Article  CAS  Google Scholar 

  84. B.U. Maheshwari, V.S. Kumar, Phase transformation of solution-based p-type Cu2ZnSnS4 thin film: applicable for solar cell. Int. J. Energy Res. 39, 771 (2015). https://doi.org/10.1002/er.3281

    Article  CAS  Google Scholar 

  85. H. Lemziouka, A. Boutahar, R. Moubah, et al. Synthesis, structural, optical and dispersion parameters of La-doped spinel zinc ferrites ZnFe2-xLaxO4 (x = 0.00, 0.001, 0.005, 0.01 and 0.015). Vacuum 182, 109780 (2020). https://doi.org/10.1016/j.vacuum.2020.109780

  86. S. Anciya, A.S.I.J. Sinthiya, P. Selvarajan, R.S. Devi, Imidazole added sulphamic acid single crystals with optimal properties for optoelectric devices. Mater. Today (2021). https://doi.org/10.1016/j.matpr.2021.09.342

  87. K. Mahendra, A. D’Souza, N.K.U. Ifthekarahmed, Synthesis and optical characterization of amaranth dye doped thiourea barium chloride (TBC) single crystals. Mater. Today 5, 16358 (2018). https://doi.org/10.1016/j.matpr.2018.05.132

    Article  CAS  Google Scholar 

  88. L.H. Omari, H. Lemziouka, M. Haddad, T. Lamhasni, Structural, optical and electrical properties of 097(PbTiO3)-0.03(LaFeO3) solid solutions. Mater. Today 13, 1205 (2019). https://doi.org/10.1016/j.matpr.2019.04.089

  89. K. Mahendra, A. D’Souza, N.K. Udayashankar, Effect of Zn doping on the structural, optical, photoluminescence and mechanical properties of thiourea barium chloride (TBC) crystal. Mater. Today Commun. 13, 178 (2017). https://doi.org/10.1016/j.mtcomm.2017.09.010

    Article  CAS  Google Scholar 

  90. D. Sahoo, P. Priyadarshini, R. Dandela et al., In situ laser irradiation: the kinetics of the changes in the nonlinear/linear optical parameters of As50Se40Sb10 thin films for photonic applications. RSC Adv. 11, 16015 (2021). https://doi.org/10.1039/D1RA02368C

    Article  CAS  Google Scholar 

  91. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  92. K.A. Aly, On the study of the optical constants for different compositions of Snx(GeSe)100–x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120, 293 (2015). https://doi.org/10.1007/s00339-015-9187-z

    Article  CAS  Google Scholar 

  93. C. Zhang, C. Koughia, O. Güneş et al., Synthesis, structure and optical properties of high-quality VO2 thin films grown on silicon, quartz and sapphire substrates by high temperature magnetron sputtering: Properties through the transition temperature. J. Alloys Compd. 848, 156323 (2020). https://doi.org/10.1016/j.jallcom.2020.156323

    Article  CAS  Google Scholar 

  94. D.A. Minkov, Method for determining the optical constants of a thin film on a transparent substrate. J. Phys. D 22, 199 (1989)

    Article  CAS  Google Scholar 

  95. K.A. Aly, Optical constants of quaternary Ge-As-Te-In amorphous thin films evaluated from their reflectance spectra. Philoso. Mag. 89, 1063 (2009). https://doi.org/10.1080/14786430902870542

    Article  CAS  Google Scholar 

  96. A.M. Nawar, I.S. Yahia, M.S. Al-Kotb, Convective self-assembled processed multiwall carbon nanotube thin films for semi-transparent microelectronic applications. J. Mater. Sci. 31, 12127 (2020). https://doi.org/10.1007/s10854-020-03759-z

    Article  CAS  Google Scholar 

  97. K.A. Aly, A.M. Abousehly, M.A. Osman, A.A. Othman, Structure, optical and electrical properties of Ge30Sb10Se60 thin films. Physica B 403, 1848 (2008). https://doi.org/10.1016/j.physb.2007.10.019

    Article  CAS  Google Scholar 

  98. S.O. Kasap, W.C. Tan, J. Singh, A. K. Ray, Fundamental Optical Properties of Materials I. In Optical Properties of Materials and Their Applications (2019).

  99. A.H. Bashal, A. Abou Elfadl, Dielectric properties and AC conductivity of nickel supported on silicon dioxide: facile synthesis and DFT calculation. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-07087-8

    Article  Google Scholar 

  100. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78, 639 (1974). https://doi.org/10.1021/j100599a016

    Article  CAS  Google Scholar 

  101. Ji. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc, Englewoad Cliffs, 1971)

    Google Scholar 

  102. H. Fujiwara, in Spectroscopic Ellipsometry: Principles and Applications. ed. by H. Fujiwara (Wiley, New York, 2007)

    Chapter  Google Scholar 

  103. K.W. Böer, U.W. Pohl, Semiconductor Physics (Springer, Switzerland, 2018)

    Book  Google Scholar 

  104. S.A. Maier, in Plasmonics: Fundamentals and Applications. ed. by S.A. Maier (Springer, New York, 2007)

    Chapter  Google Scholar 

  105. J.D. Patterson, B.C. Bailey, Solid State Physics: Introduction to the Theory (Springer, Berlin, 2007)

    Google Scholar 

  106. H. Ibach, H. Lüth, in Solid-State Physics: An Introduction to Theory and Experiment. ed. by H. Ibach, H. Lüth (Springer, Berlin, 1991)

    Chapter  Google Scholar 

  107. K.C. Kao, in Dielectric Phenomena in Solids. ed. by K.C. Kao (Academic Press, San Diego, 2004)

    Google Scholar 

  108. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Wiley, Hoboken, 2017)

    Book  Google Scholar 

  109. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constants of Cu(II) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film. Opt. Commun. 239, 275 (2004). https://doi.org/10.1016/j.optcom.2004.05.038

    Article  CAS  Google Scholar 

  110. G.B. Sakr, I.S. Yahia, M. Fadel, S.S. Fouad, N. Romčević, Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J. Alloys Compd. 507, 557 (2010). https://doi.org/10.1016/j.jallcom.2010.08.022

    Article  CAS  Google Scholar 

  111. M.M. El-Nahass, H.S. Soliman, A. El-Denglawey, Absorption edge shift, optical conductivity, and energy loss function of nano thermal-evaporated N-type anatase TiO films. Appl. Phys. A 122, 775 (2016). https://doi.org/10.1007/s00339-016-0302-6

    Article  CAS  Google Scholar 

  112. M. Haj Lakhdar, T. Larbi, B. Ouni, M. Amlouk, Optical and structural investigations on Sb2S2O new kermesite alloy for optoelectronic applications. J. Alloys Compd. 579, 198 (2013). https://doi.org/10.1016/j.jallcom.2013.06.052

    Article  CAS  Google Scholar 

  113. A.A.M. Farag, M. Abdel Rafea, N. Roushdy, O. El-Shazly, E.F. El-Wahidy, Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1−xCdxS (0⩽x⩽0.9) films. J. Alloys Compd. 621, 434 (2015). https://doi.org/10.1016/j.jallcom.2014.09.091

  114. M.M. El-Nahass, A.A. Atta, M.M. Abd El-Raheem, A.M. Hassanien, Structural and optical properties of DC Sputtered Cd2SnO4 nanocrystalline films. J. Alloys Compd. 585, 1 (2014). https://doi.org/10.1016/j.jallcom.2013.09.079

    Article  CAS  Google Scholar 

  115. P.K. Pothuganti, A. Bhogi, M.R. Kalimi, P.S. Reniguntla, Optical and AC conductivity characterization of alkaline earth borobismuthate glasses doped with nickel oxide. Optik 220, 165152 (2020). https://doi.org/10.1016/j.ijleo.2020.165152

  116. N. Banu, A.H. Bhuiyan, K.S. Hossain, Characterization of structural and optical properties of plasma polymerized diethanolamine thin films. Adv. Polym. Technol. 37, 3084 (2018). https://doi.org/10.1002/adv.22079

    Article  CAS  Google Scholar 

  117. D. Singh, S. Kumar, K. Anand, R. Thangaraj, Composition dependence of the optical constants of amorphous (Se80Te20)100−xAgx (0 ≤ x ≤ 4) films. Physica Status Solidi (a) 210, 2128 (2013).https://doi.org/10.1002/pssa.201329166

  118. M.A. Elhady, A. Abdeldaym, Effect of aluminum oxide nanoparticles additives and gamma irradiation on the structural and optical properties of syndiotactic polystyrene. Polym. Eng. Sci. 59, 555 (2019). https://doi.org/10.1002/pen.24970

    Article  CAS  Google Scholar 

  119. A. Delin, O. Eriksson, R. Ahuja et al., Optical properties of the group-IVB refractory metal compounds. Phys. Rev. B 54, 1673 (1996). https://doi.org/10.1103/PhysRevB.54.1673

    Article  CAS  Google Scholar 

  120. A.N. Sabbar, B.H. Azeez, K.M. Talib, Effect of mixing on the optical parameters of polymer blend (PMMA:PVC:PS) thin films. IOP Conf. Ser. 454, 012129 (2018). https://doi.org/10.1088/1757-899x/454/1/012129

    Article  CAS  Google Scholar 

  121. S.V.A. Santhia, B. Aneeba, S. Vinu, R.S. Christy, Structural, optical, mechanical, electrical, and antimicrobial activities of L-Glutamine Barium Acetate (LGBA) single crystal for biological, optical and photonic applications. J. Mater. Sci. 32, 21065 (2021). https://doi.org/10.1007/s10854-021-06598-8

    Article  CAS  Google Scholar 

  122. A. Qasem, H.A. Alrafai, B. Alshahrani, N. Mahjoub Said, A.A. Hassan, H.A. Yakout, E.R. Shaaban, J. Alloys Compd. 899, 163374 (2022). https://doi.org/10.1016/j.jallcom.2021.163374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal A. Aly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, K.A. Comment on the relationship between electrical and optical conductivity used in several recent papers published in the journal of materials science: materials in electronics. J Mater Sci: Mater Electron 33, 2889–2898 (2022). https://doi.org/10.1007/s10854-021-07496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07496-9

Navigation