Skip to main content
Log in

Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films (~ 150 nm) of amorphous As30Te70−xGax (where x = 0, 1, 3, 6, and 10 at%) are prepared through thermal evaporation of As30Te70−xGax bulk samples on glass substrates. X-ray powder diffraction (XRD) analysis reveals the amorphous nature of the as-prepared As30Te70−xGax thin films. The influence of Ga content on the As30Te70−xGax thin films’ linear and nonlinear optical properties is determined based on the optical reflectance and transmittance spectra. The estimated (direct or indirect) optical bandgap decreases with an increase in Ga content up to 3 at% and then increases, whereas the Urbach energy exhibits an opposite trend. The linear and nonlinear refractive indices, extension coefficient, optical conductivity, electrical conductivity and nonlinear susceptibility, optical density, inter-band transition strength, etc., are found to be significantly influenced by Ga content and the energy of incident waves. The As30Te67Ga3 composition can be considered as a puzzling compound as most of the investigated parameters in As30Te70−xGax alloys demonstrate opposite behaviors around that composition. Moreover, the optical surface resistance and thermal emission of As30Te70−xGax thin films are estimated from the investigated optical parameters and it was found that they are dependent on Ga content. The obtained results enhanced basic understanding and showed that the As–Te–Ga system qualifies for various optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A. Burian, P. Lecante, A. Mosset, J. Galy, J.M. Tonnerre, D. Raoux, Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. J. Non-Cryst. Solids 212(1), 23–39 (1997). https://doi.org/10.1016/S0022-3093(96)00649-7

    Article  CAS  Google Scholar 

  2. X.H. Zhang, J.L. Adam, B. Bureau, Chalcogenide glasses, in Springer Handbook of Glass ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), pp. 525–552. https://doi.org/10.1007/978-3-319-93728-1_15

  3. R. Tomova, R. Stoycheva-Topalova, A. Buroff, Thin-film sensors based on evaporated chalcogenide glasses. J. Mater. Sci. Mater. Electron. 14(10–12), 843–845 (2003). https://doi.org/10.1023/A:1026102631596

    Article  CAS  Google Scholar 

  4. A.V. Kolobov, J. Tominaga, Chalcogenide glasses as prospective materials for optical memories and optical data storage. J. Mater. Sci. Mater. Electron. 14(10–12), 677–680 (2003). https://doi.org/10.1023/A:1026166701612

    Article  CAS  Google Scholar 

  5. S. Naghizade, S.M. Sattari-Esfahlan, An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. 41(1), 37–43 (2019). https://doi.org/10.1515/joc-2017-0129

    Article  Google Scholar 

  6. H. Endo, H. Hoshino, H. Ikemoto, T. Miyanaga, Semiconductor-metal transition in liquid As–Te mixtures. J. Phys. Condens. Matter 12(28), 6077–6099 (2000). https://doi.org/10.1088/0953-8984/12/28/306

    Article  CAS  Google Scholar 

  7. A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, A.A. Abu-Sehly, M.A. Abdel-Rahim, M.M. Hafiz, Influence of annealing temperature on the structural and optical properties of As30Te70 thin films. Mater. Sci. Pol. 35(2), 335–345 (2017). https://doi.org/10.1515/msp-2017-0052

    Article  CAS  Google Scholar 

  8. J.C. Rouland, R. Ollitrault-Fichet, J. Flahaut, J. Rivet, R. Ceolin, The As–Te system: phase diagram and glass separation. Thermochim. Acta 161(1), 189–200 (1990). https://doi.org/10.1016/0040-6031(90)80300-N

    Article  CAS  Google Scholar 

  9. J.R. Eifert, E.A. Peretti, The phase diagram of the system tellurium/arsenic. J. Mater. Sci. 3(3), 293–296 (1968). https://doi.org/10.1007/BF00741964

    Article  CAS  Google Scholar 

  10. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, S. Moustafa, Comparative investigation of electronic properties of As-70 at.% Te thin films: Influence of Ga doping and annealing temperature. J. Non-Cryst. Solids 540, 120062 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120062

    Article  CAS  Google Scholar 

  11. A.M. Abd-Elnaiem, S. Moustafa, Optical properties of annealed As30Te67Ga3 thin films grown by thermal evaporation. Process. Appl. Ceram. 12(3), 209–217 (2018). https://doi.org/10.2298/PAC1803209A

    Article  CAS  Google Scholar 

  12. M. Dongol, Optical absorption and structural properties of as-deposited and thermally annealed As–Te-Ga thin films. Egypt. J. Solids. 25(1), 33–47 (2002)

    Google Scholar 

  13. M. Dongol, M.M. Hafiz, M. Abou-Zied, A.F. Elhady, Effect of composition on the electrical and structural properties of As–Te–Ga thin films. Appl. Surf. Sci. 185(1–2), 1–10 (2001). https://doi.org/10.1016/S0169-4332(01)00394-4

    Article  CAS  Google Scholar 

  14. V.C. Selvaraju, S. Asokan, V. Srinivasan, Electrical switching studies on As40Te60–xSex and As35Te65–xSex glasses. Appl. Phys. A 77(1), 149–153 (2003). https://doi.org/10.1063/1.5038712

    Article  CAS  Google Scholar 

  15. N. Manikandan, S. Asokan, Network topological thresholds in gallium doped As–Te glasses—electrical and thermal investigations. J. Non-Cryst. Solids 353(13–15), 1247–1250 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.10.055

    Article  CAS  Google Scholar 

  16. T. Usuki, O. Uemura, S. Konno, Y. Kameda, M. Sakurai, Structural and physical properties of Ag–As–Te glasses. J. Non-Cryst. Solids 293, 799–805 (2001). https://doi.org/10.1016/S0022-3093(01)00791-8

    Article  Google Scholar 

  17. G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-El-Rahman, The radiation effect on optical and morphological properties of Ag–As–Te thin films. Radiat. Meas. 42(3), 400–406 (2007). https://doi.org/10.1016/j.radmeas.2006.12.006

    Article  CAS  Google Scholar 

  18. A.A. Dunaev, Z.U. Borisova, M.D. Mikhailov, I.V. Privalova, Domaine de vitrification et proprietes des verres du systeme As–Te-Ga. Fiz. Khim. Stekla. 4(3), 346–350 (1978)

    CAS  Google Scholar 

  19. Z. Borisova, Glassy Semiconductors (Springer, Berlin, 2013)

    Google Scholar 

  20. J. Cornet, Structure and properties of noncrystalline semiconductors, in Proc. 6th Internat. Conf. on Amorphous and Liquid Semiconductors, Leningrad, pp. 72–77 (1975)

  21. P.G. Rustamov, B.K. Babaeva, V.B. Cherstvova, Investigation of the Interaction in the Ga-As-Te System and Obtaining of the Indium Chalcogenoantimonides [in Russian]. In Khalkogenidy. Vyp. 3. (Nauk. Dumka Publish., Kiev, 1974), pp. 106–111

  22. Z. Zang, A. Nakamura, J. Temmyo, Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater. Lett. 92, 188–191 (2013). https://doi.org/10.1016/j.matlet.2012.10.083

    Article  CAS  Google Scholar 

  23. X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, M. Zhou, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer. J. Mater. Chem. A 5(33), 17499–17505 (2017). https://doi.org/10.1039/C7TA00203C

    Article  CAS  Google Scholar 

  24. M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 7(46), 26421–26428 (2019). https://doi.org/10.1039/C9TA08314F

    Article  CAS  Google Scholar 

  25. S. Cao, H. Wang, H. Li, J. Chen, Z. Zang, Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem. Eng. J. 394, 124903 (2020). https://doi.org/10.1016/j.cej.2020.124903

    Article  CAS  Google Scholar 

  26. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019). https://doi.org/10.1016/j.nanoen.2018.12.097

    Article  CAS  Google Scholar 

  27. B.T. Kolomiets, B.V. Pavlov, Width of arsenic chalcogenides in transition from glass to crystal change in forbidden-band. Sov. Phys. Semicond. 1(3), 350 (1967)

    Google Scholar 

  28. F. Kosek, Z. Cimpl, M.D. Mikhailov, E.A. Karpova, Electrical and optical properties of the As–Te–In and Ge–Se–In chalcogenide systems. J. Non-Cryst. Solids 86(3), 265–270 (1986). https://doi.org/10.1016/0022-3093(86)90014-1

    Article  CAS  Google Scholar 

  29. M.M. Hafiz, A.H. Moharram, A.A. Abu-Sehly, The effect of silver incorporation on the properties of co-evaporated arsenic telluride thin films. Appl. Surf. Sci. 115(3), 203–210 (1997). https://doi.org/10.1016/S0169-4332(96)01088-4

    Article  CAS  Google Scholar 

  30. S.M. El-Sayed, H.M. Saad, Effect of composition and forming parameter on evaporated Ag–As–Te thin films. Mater. Chem. Phys. 107(1), 39–43 (2008). https://doi.org/10.1016/j.matchemphys.2007.06.037

    Article  CAS  Google Scholar 

  31. M.A. Abdel-Rahim, Annealing dependence of optical and electrical properties of Ga8As46Te46 thin films. J. Phys. Chem. Solids 60(1), 29–39 (1999). https://doi.org/10.1016/S0022-3697(98)00250-9

    Article  CAS  Google Scholar 

  32. A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, M.A. Abdel-Rahim, A.A. Abu-Sehly, M.M. Hafiz, Structural and optical characterization of annealed As30Te60Ga10 thin films prepared by thermal evaporation technique. Mater. Sci. Pol. 36(2), 193–202 (2018). https://doi.org/10.1515/msp-2018-0022

    Article  CAS  Google Scholar 

  33. E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B 37(3), 1273–1279 (1988). https://doi.org/10.1007/978-1-4615-1963-8_39

    Article  CAS  Google Scholar 

  34. P. Anchala, S.P. Purohit, K.C. Mathur, Linear and nonlinear intersubband optical properties of Si quantum dot embedded in oxide, nitride, and carbide matrix. J. Appl. Phys. 110(11), 114320 (2011). https://doi.org/10.1063/1.3665687

    Article  CAS  Google Scholar 

  35. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992)

    Google Scholar 

  36. M. Goppert-Mayer, Ueber Elementarakte mit zwei Quanenspruengen. Ann. Phys. 9, 273–294 (1931). https://doi.org/10.1002/andp.19314010303

    Article  CAS  Google Scholar 

  37. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960). https://doi.org/10.1038/187493a0

    Article  Google Scholar 

  38. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7(4), 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  Google Scholar 

  39. T.S. Moss, Optical Properties of Semi-conductors (Butterworths Scientific, London, 1959) https://doi.org/10.1016/0022-3697%2859%2990017-4

    Book  Google Scholar 

  40. E. Márquez, J.B. Ramirez-Malo, J. Fernández-Peña, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, On the optical properties of wedge-shaped thin films of Ag-photodoped As30S70 glass. Opt. Mater. 2(3), 143–150 (1993). https://doi.org/10.1016/0925-3467(93)90005-L

    Article  Google Scholar 

  41. A. Abu El-Fadl, M.M. Hafiz, M.M. Wakaad, A.S. Aashour, Influence of γ-radiation on the optical parameters of Ag10Te90 thin films. Radiat. Phys. Chem. 76(1), 61–66 (2007). https://doi.org/10.1016/j.radphyschem.2006.08.007

    Article  CAS  Google Scholar 

  42. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22(179), 0903–0922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  43. D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60–x)V2O5–40TeO2xSb2O3) glasses. J. Non-Cryst. Solids 355(31–33), 1597–1601 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.003

    Article  CAS  Google Scholar 

  44. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119(2), 273–279 (2015). https://doi.org/10.1007/s00340-015-6053-9

    Article  CAS  Google Scholar 

  45. A. Gh. Abbady, A.M. Qasem, A. Abd-Elnaiem, Optical parameters and electronic properties for the transition of the amorphous-crystalline phase in Ge20Te80 thin films. J. Alloys Compd. 842, 155705 (2020). https://doi.org/10.1016/j.jallcom.2020.155705

    Article  CAS  Google Scholar 

  46. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  47. M.M. Hafiz, A.A. Othman, M.M. El-Nahass, A.T. Al-Motasem, Composition and thermal-induced effects on the optical constants of Ge20Se80–xBix thin films. Physica B 390(1–2), 348–355 (2007). https://doi.org/10.1016/j.physb.2006.08.036

    Article  CAS  Google Scholar 

  48. M.A. Abdel-Rahim, M.M. Hafiz, A.Z. Mahmoud, Effect of Sb additive on structural and optical properties of Se–Te–Sb thin films. Appl. Phys. A 118(3), 981–988 (2015). https://doi.org/10.1007/s00339-014-8853-x

    Article  CAS  Google Scholar 

  49. D.S. GillRobert, W. Eason, C. Zaldo, H.N. Rutt, N.A. Vainos, Characterisation of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition. J. Non-Cryst. Solids. 191, 321–326 (1995). https://doi.org/10.1016/0022-3093(95)00319-3

  50. H. El-Zahed, Optical absorption study of amorphous CuxGe20−xTe80 films as a function of composition. Physica B 307, 95–104 (2001). https://doi.org/10.1016/S0921-4526(01)00644-5

  51. S.H. Wemple, M. Didomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  52. M.M. Abd El-Raheem, Optical properties of AsSeTl thin films deposited by e-beam evaporation technique. Surf. Rev. Lett. 18, 71–75 (2011). https://doi.org/10.1142/S0218625X11014394

    Article  CAS  Google Scholar 

  53. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    CAS  Google Scholar 

  54. K. Tanaka, Optical properties and photoinduced changes in amorphous As–S films. Thin Solid Films 66(3), 271–279 (1980). https://doi.org/10.1016/0040-6090(80)90381-8

    Article  CAS  Google Scholar 

  55. S.H. Wemple, J.M. DiDomenico, Theory of the elasto-optic effect in nonmetallic crystals. Phys. Rev. B 1(1), 193 (1970). https://doi.org/10.1103/PhysRevB.1.193

    Article  CAS  Google Scholar 

  56. A.K. Walton, T.S. Moss, Determination of refractive index and correction to effective electron mass in PbTe and PbSe. Proc. Phys. Soc. 81, 509–513 (1963). https://doi.org/10.1088/0370-1328/81/3/319

  57. F. Yakuphanoglu, C. Viswanathan, Electrical conductivity and single oscillator model properties of amorphous CuSe semiconductor thin film. J. Non-Cryst. Solids 353(30–31), 2934–2937 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.055

    Article  CAS  Google Scholar 

  58. L. Tsang, J.A. Kong, K.H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2004)

    Google Scholar 

  59. M.M. Hafiz, H.M. Kotb, M.A. Dabban, A.Y. Abdel-Latif, Optical properties of Cd20Se80–xMx (M: Zn, In, and Sn) thin film alloys. Opt. Laser Technol. 49, 188–195 (2013). https://doi.org/10.1016/j.optlastec.2013.01.005

    Article  CAS  Google Scholar 

  60. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2(6), 2045–2048 (1970). https://doi.org/10.1103/PhysRevB.2.2045

    Article  Google Scholar 

  61. V. Kumar, B.S.R. Sastry, Heat of formation of ternary chalcopyrite semiconductors. J. Phys. Chem. Solids 66(1), 99–102 (2005). https://doi.org/10.1016/j.jpcs.2004.08.034

    Article  CAS  Google Scholar 

  62. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  63. J.D. Patterson, B.C. Bailey, Optical properties of solids, in Solid-State Physics. (Springer, Cham, 2018), pp. 649–704. https://doi.org/10.1007/978-3-319-75322-5_10

    Chapter  Google Scholar 

  64. R.H. French, H. Müllejans, D.J. Jones, Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81(10), 2549–2557 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02660.x

    Article  CAS  Google Scholar 

  65. R.H. French, Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83(9), 2117–2146 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01527.x

    Article  CAS  Google Scholar 

  66. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

    Article  CAS  Google Scholar 

  67. T.S. Moss, A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. Sect. B 63(3), 167–176 (1950). https://doi.org/10.1088/0370-1301/63/3/302

    Article  Google Scholar 

  68. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi B 93(2), K155–K160 (1979). https://doi.org/10.1002/pssb.2220930257

    Article  CAS  Google Scholar 

  69. P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35(4), 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  CAS  Google Scholar 

  70. P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77(10), 5476–5477 (1995). https://doi.org/10.1063/1.359248

    Article  CAS  Google Scholar 

  71. P. Sharma, S.C. Katyal, Linear and nonlinear refractive index of As–Se–Ge and Bi doped As–Se–Ge thin films. J. Appl. Phys. 107(11), 113527–113525 (2010). https://doi.org/10.1063/1.3428441

    Article  CAS  Google Scholar 

  72. M. Reidinger, M. Rydzek, C. Scherdel, M. Arduini-Schuster, J. Manara, Low-emitting transparent coatings based on tin doped indiumoxide applied via a sol–gel routine. Thin Solid Films 517(10), 3096–3099 (2009). https://doi.org/10.1016/j.tsf.2008.11.078

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. R. M. Hassan would like to thank Mr. Ammar Qasem (Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo) for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaiem, A.M., Hassan, R.M., Alamri, H.R. et al. Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content. J Mater Sci: Mater Electron 31, 13204–13218 (2020). https://doi.org/10.1007/s10854-020-03872-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03872-z

Navigation