Skip to main content
Log in

Comparative studies on formation and material characterization of L-histidine derivatives for nonlinear optical device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nonlinear optical crystalline materials L-histidinium hydrochloride monohydrate (LHHCL) and L-histidinium methyl ester dihydrochloride (LHMDHCL) were successfully grown by slow solvent evaporation technique. As-grown crystalline materials were subjected to X-ray structure analysis, FT-Raman spectroscopy, energy-dispersive X-ray spectroscopy, UV–Vis spectroscopy, frequency conversion analysis, dielectric and Vicker’s microhardness studies. According to XRD data, the grown crystal LHHCL was crystallized to an orthorhombic form having a space group P212121, while LHMDHCL crystal belongs to a monoclinic form with a space group P21. The FT-Raman study confirms the existence of chemical groups and the formation of two different crystals. The chemical compositions of the as-grown crystalline materials were established by Energy-dispersive X-ray spectroscopy. The UV–Vis study substantiates the transparency of LHHCL and LHMDHCL in the wavelength regions of 232–1000 nm and 230–1000 nm, respectively. Using the Tauc equation, the bandgap energy was determined as 5.35 eV and 5.38 eV for LHHCL and LHMDHCL crystals, respectively. In addition, the grown crystals have shown a better frequency conversion efficiency in comparison to KDP samples. According to the dielectric study, dielectric characteristics such as dielectric constant and dielectric loss for the LHHCL and LHMDHCL crystals drop as frequency increases. The hardness of the LHHCL and LHMDHCL crystals was measured by Vickers microhardness test which reveals that the grown crystals follow the normal indentation size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.J. Shanmuga Sundar, S.M. Ravi Kumar, M. Packiya Raj, S. Selvakumar, Mater. Res. Bullet. 112, 22–27 (2019). https://doi.org/10.1016/j.materresbull.2018.11.043

    Article  CAS  Google Scholar 

  2. P. Krishnamoorthi, P. Sundaramoorthi, J. Mater. Sci. Mater. Electron. 32, 21756–21769 (2021). https://doi.org/10.1007/s10854-021-06696-7

    Article  CAS  Google Scholar 

  3. E. Raju, P. Jayaprakash, G. Vinitha, N. Saradha Devi, S. Kumaresan, J. Mater. Sci. Mater. Electron. 32, 21155–21163 (2021). https://doi.org/10.1007/s10854-021-06614-x

    Article  CAS  Google Scholar 

  4. M. Rajkumar, A. Chandramohan, Mater. Lett. 181, 354–357 (2016). https://doi.org/10.1016/j.matlet.2016.04.191

    Article  CAS  Google Scholar 

  5. K. Xu, L. Cao, F. You, D. Zhong, T. Wang, Z. Yu, C. Hu, J. Tang, B. Teng, J. Cryst. Grow. 547, 125757 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125757

    Article  CAS  Google Scholar 

  6. Z.S. Feng, Z.H. Kang, F.G. Wu, J.Y. Gao, Y. Jiang, H.Z. Zhang, Y.M. Andreev, G.V. Lanskii, V.V. Atuchin, T.A. Gavrilova, Opt. Express. 16, 9978–9985 (2008). https://doi.org/10.1364/OE.16.009978

    Article  CAS  Google Scholar 

  7. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarov, T.A. Gavrilova, A.K. Krylov, M.S. Molokeev, A.S. Oreshonkov, S.Y. Stefanovich, Mater. Des. 140, 488–494 (2018). https://doi.org/10.1016/j.matdes.2017.12.004

    Article  CAS  Google Scholar 

  8. E.V. Alekseev, O. Felbinger, S. Wu, T. Malcherek, W. Depmeier, G. Modolo, T.M. Gesing, S.V. Krivovichev, E.V. Suleimanov, T.A. Gavrilova, L.D. Pokrovsky, A.M. Pugachev, N.V. Surovtsev, V.V. Atuchin, J. Solid State Chem. 204, 59–63 (2013). https://doi.org/10.1016/j.jssc.2013.04.038

    Article  CAS  Google Scholar 

  9. ISh. Steinberg, A.V. Kirpichnikov, V.V. Atuchin, Opt. Mater. 78, 253–258 (2018). https://doi.org/10.1016/j.optmat.2017.11.025

    Article  CAS  Google Scholar 

  10. P. Karuppasamy, D. Joseph Daniel, H.J. Kim, M. Senthil Pandian, P. Ramasamy, J. Cryst. Grow. 535, 125528 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125528

    Article  CAS  Google Scholar 

  11. S. Devi, D. Jananakumar, Appl. Phys. A 126, 394 (2020). https://doi.org/10.1007/s00339-020-03571-w

    Article  CAS  Google Scholar 

  12. R. Divya, V.T. Vineeth, B.R. Bijini, C.M.K. Nair, K. RajendraBabu, J. Mole. Struct. 1200, 127031 (2020). https://doi.org/10.1016/j.molstruc.2019.127031

    Article  CAS  Google Scholar 

  13. P. Karuppasamy, M. Senthil Pandian, P. Ramasamy, S.K. Das, Optik 156, 707–719 (2018). https://doi.org/10.1016/j.ijleo.2017.12.012

    Article  CAS  Google Scholar 

  14. S. Shanmugan, N. Saravanan, V. Chithambaram, B. Deepanraj, G. Palani, Bull. Mater. Sci. 43, 202 (2020). https://doi.org/10.1007/s12034-020-02176-6

    Article  CAS  Google Scholar 

  15. J. Palaninathan, V. Rathinam, A.B. Ali Baig, V. Rathinam, V. Ramya, J. Mater. Sci. Mater. Electron. 36, 6820–6829 (2021). https://doi.org/10.1007/s10854-021-05387-7

    Article  CAS  Google Scholar 

  16. M.R. Hareeshkumar, G.J. Shankaramurthy, A. Alhadhrami, M.R. Jagadeesh, B.M. Prasanna, Iran. J. Sci. Technol. Trans. Sci. 45, 1843–1850 (2021). https://doi.org/10.1007/s40995-021-01160-x

    Article  Google Scholar 

  17. H.O. Marcy, M.J. Rosker, L.F. Warren, P.H. Cunningham, C.A. Thomas, Opt. Lett. 20, 252–254 (1995). https://doi.org/10.1364/OL.20.000252

    Article  CAS  Google Scholar 

  18. J. Madhavan, S. Aruna, A. Anuradha, D. Premanand, I. Vetha Potheher, Opt. Mater. 29, 1211–1216 (2007). https://doi.org/10.1016/j.optmat.2006.04.013

    Article  CAS  Google Scholar 

  19. J. Madhavan, S. Aruna, K. Praba, J.P. Julius, J. Jinson, P. Joseph, S. Selvakumar, P. Sagayaraj, J. Cryst. Grow. 293, 409–414 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.050

    Article  CAS  Google Scholar 

  20. S. Aruna, M. Vimalan, P.C. Thomas, K. Thamizharasan, K. Ambugam, J. Madhavan, P. Sagayaraj, Cryst. Res. Technol. 42, 180–185 (2007). https://doi.org/10.1002/crat.200610793

    Article  CAS  Google Scholar 

  21. H.A. Petrosyan, H.A. Karapetyan, A.M. Petrosyan, J. Mol. Struct. 794, 160–167 (2006). https://doi.org/10.1016/j.molstruc.2006.02.004

    Article  CAS  Google Scholar 

  22. H.A. Petrosyanm, H.A. Karapetyan, A.K. Atanesyan, A.M. Petrosyan, J. Mol. Struct. 963, 168–174 (2010). https://doi.org/10.1016/j.molstruc.2009.10.030

    Article  CAS  Google Scholar 

  23. J. Ramajothi, S. Danuskodi, Spect. Chim. Acta A. 68, 1213–1219 (2007). https://doi.org/10.1016/j.saa.2007.01.030

    Article  CAS  Google Scholar 

  24. M. Fleck, V.V. Ghazaryan, L.S. Bezhanova, A.K. Atanesyan, A.M. Petrosyan, J. Mol. Struct. 1035, 407–415 (2013). https://doi.org/10.1016/j.molstruc.2012.11.067

    Article  CAS  Google Scholar 

  25. J. Ramajothi, S. Dhanuskodi, Cryst. Res. Technol. 38, 592–597 (2004). https://doi.org/10.1002/crat.200310229

    Article  CAS  Google Scholar 

  26. G.H. Sun, X.T. Sun, Z.H. Sun, X.Q. Wang, X.J. Liu, G.H. Zhang, D. Xu, J. Cryst. Grow. 311, 3904–3910 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.022

    Article  CAS  Google Scholar 

  27. H.M. Albert, A. Joseph Arul Pragasam, G. Bhagavannarayana, C. Alosious Gonsago, J. Therm. Anal. Calorim. 118, 333–338 (2014). https://doi.org/10.1007/s10973-014-4007-9

    Article  CAS  Google Scholar 

  28. J. Chandrasekaran, P. Ilayabarathi, P. Maadeswaran, P. Mohamed Kutty, S. Pari, Opt. Commun. 285, 2096–2100 (2012). https://doi.org/10.1016/j.optcom.2011.12.063

    Article  CAS  Google Scholar 

  29. P. Catherine, P. Praveen Kumar, B. Gunasekaran, Opt. Quant. Elect. 53, 191 (2021). https://doi.org/10.1007/S11082-021-02830-1

    Article  CAS  Google Scholar 

  30. J. Donohue, A. Caron, Acta Crystallogra. 17, 1178 (1964). https://doi.org/10.1107/S0365110X64003048

    Article  CAS  Google Scholar 

  31. V.H. Vilchiz, R.E. Norman, S.C. Chang, Acta Crystallogr. C. 51, 696–698 (1996). https://doi.org/10.1107/s0108270195013308

    Article  Google Scholar 

  32. S. Balaprabhakaran, J. Chandrasekaran, B. Babu, R. Thirumurugan, K. Anitha, Spect. Chim. Acta A 136, 700–706 (2015). https://doi.org/10.1016/j.saa.2014.09.084

    Article  CAS  Google Scholar 

  33. N.R. Rajagopalan, P. Krishnamoorthy, Optik 127, 3582–3589 (2016). https://doi.org/10.1016/j.ijleo.2015.12.153

    Article  CAS  Google Scholar 

  34. G. Herzberg, B.L. Crawford Jr., J. Phys. Chem. 50, 288 (1946). https://doi.org/10.1021/j150447a021

    Article  Google Scholar 

  35. J.R. Ferraro, K. Nakamoto, C.W. Brown, Introductory Raman Spectroscopy, 2nd edn. (Academic Press, Amsterdam, 2003)

    Google Scholar 

  36. C.K. Bhat, C.L. Bhat, P.K. Madan Lal, P.K. Patra, P.N. Kotru, X-ray Spectrom. 23, 247–250 (1994). https://doi.org/10.1002/xrs.1300230603

    Article  CAS  Google Scholar 

  37. E. Cook, R. Fong, J. Horrocks, D. Wilkinson, R. Speller, Appl. Rad. Isoto. 65, 959–967 (2007). https://doi.org/10.1016/j.apradiso.2007.02.010

    Article  CAS  Google Scholar 

  38. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Opt. Mater. 34, 893–900 (2012). https://doi.org/10.1016/j.optmat.2011.11.027

    Article  CAS  Google Scholar 

  39. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Y.L. Tushinova, A.P. Yelisseyev, Adv. Powd. Technol. 28, 1309–1315 (2017). https://doi.org/10.1016/j.apt.2017.02.019

    Article  CAS  Google Scholar 

  40. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Soli. B. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  41. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

  42. T. Sivanandan, S. Kalainathan, Mater. Lett. 162, 211–213 (2016). https://doi.org/10.1016/j.matlet.2015.10.009

    Article  CAS  Google Scholar 

  43. K. Senthil, K. Elangovan, A. Senthil, G. Vinitha, Spect. Chim. Acta A. 247, 119063 (2021). https://doi.org/10.1016/j.saa.2020.119063

    Article  CAS  Google Scholar 

  44. P. Sagunthala, V. Veeravazhuthi, P. Hemalatha, P. Yasotha, Ferroelect. 504, 96–103 (2016). https://doi.org/10.1080/00150193.2016.1239487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Merina Albert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 2031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, H.M., Gonsago, C.A. Comparative studies on formation and material characterization of L-histidine derivatives for nonlinear optical device applications. J Mater Sci: Mater Electron 33, 2970–2979 (2022). https://doi.org/10.1007/s10854-021-07495-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07495-w

Navigation