Skip to main content
Log in

Growth, structural, optical and thermal studies of semi-organic nonlinear optical potassium hydrogen oxalate single crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single crystals of semi-organic nonlinear optical material potassium hydrogen oxalate are grown from the aqueous solutions of potassium hydroxide and oxalic acid in 1:1 stoichiometric ratio by slow evaporation solution growth method at room temperature. The grown crystals are subjected to various characterization techniques to explore their structural explication, thermal, linear and nonlinear optical perspectives for optoelectronic device applications. The monoclinic structure with non-centrosymmetric space group P21/c of the titular compound has been confirmed by single-crystal X-ray diffraction. The crystal packing is ruled by extensive networks of hydrogen bonds revealed by the detailed study of the refinement of the crystal structure. Optical transparency of the crystal in the entire visible region has been confirmed by ultraviolet–visible-near infrared (UV–Vis-NIR) analysis. The robust thermal stability of the grown crystal is ensured by thermogravimetric–differential thermal analysis. The presence of expected functional groups in the grown crystal has been confirmed by Fourier transform infrared spectroscopic studies. Second-harmonic generation efficiency has been calculated by Kurtz powder method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1990). https://doi.org/10.1002/pi.4990250317

    Book  Google Scholar 

  2. P. Maadeswaran, J. Chandrasekaran, S. Thirumalairajan, Optik 122, 259–262 (2011). https://doi.org/10.1016/j.ijleo.2009.11.031

    Article  ADS  Google Scholar 

  3. R. Bhuvaneswari, G. Vinitha, K.S. Murugesan, Appl. Phys. A 125, 385 (2019). https://doi.org/10.1007/s00339-019-2678-6

    Article  ADS  Google Scholar 

  4. J. Ramajothi, S. Dhanuskodi, Cryst. Res. Technol. 38, 986–991 (2003). https://doi.org/10.1002/crat.200310125

    Article  Google Scholar 

  5. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.G. Penn, D.O. Frazier, J. Cryst. Growth 204, 179–182 (1999). https://doi.org/10.1016/S0022-0248(99)00200-6

    Article  ADS  Google Scholar 

  6. A. Deepthy, H.L. Bhat, J. Cryst. Growth 226, 287–293 (2001). https://doi.org/10.1016/S0022-0248(01)01365-3

    Article  ADS  Google Scholar 

  7. K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochim. Acta Part A 69, 1283–1286 (2008). https://doi.org/10.1016/j.saa.2007.07.042

    Article  ADS  Google Scholar 

  8. A. Senthil, P. Ramasamy, J. Cryst. Growth 401, 200–204 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.022

    Article  ADS  Google Scholar 

  9. R.O.M.U. Jauhar, G. Vinitha, P. Murugakoothan, J. Cryst. Growth 455, 90–93 (2016). https://doi.org/10.1016/j.jcrysgro.2016.09.012

    Article  ADS  Google Scholar 

  10. A. Krishna, N. Vijayan, B. Riscob, B.S. Gour, D. Haranath, J. Philip, S.K. Halder, Appl. Phys. A 114, 1257–1265 (2013). https://doi.org/10.1007/s00339-013-7902-1

    Article  ADS  Google Scholar 

  11. N.R. Dhumane, S.S. Hussaini, V.G. Dongre, P. Ghugare, M.D. Shirsat, Appl. Phys. A 95, 727–732 (2008). https://doi.org/10.1007/s00339-008-5029-6

    Article  ADS  Google Scholar 

  12. C.R. Thaya Kumari, M. Nageshwari, S. Sudha, M.L. Caroline, Chin. J. Phys. 56, 2673–2683 (2018). https://doi.org/10.1016/j.cjph.2018.09.038

    Article  Google Scholar 

  13. S. Chandran, R. Paulraj, P. Ramasamy, J. Cryst. Growth 468, 68–72 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.006

    Article  ADS  Google Scholar 

  14. M. Essid, S. Muhammad, H. Marouani, A. Saeed, Z. Aloui, A.G. Al-Sehemi, J. Mol. Struct. 1211, 128075 (2020). https://doi.org/10.1016/j.molstruc.2020.128075

    Article  Google Scholar 

  15. S. Sudha, P. Jayaprakash, C.R. Thaya Kumari, M. Nageshwari, G. Vinitha, R.G. Raman, M.L. Caroline, Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.08.017

    Article  Google Scholar 

  16. R. Senthil, G. Vijayaragavan, A. Ayeshamariam, K. Kaviyarasu, Surf. Interfaces 18, 100417 (2020). https://doi.org/10.1016/j.surfin.2019.100417

    Article  Google Scholar 

  17. G. Marudhu, S. Krishnan, T. Thilak, P. Samuel, G. Vinitha, G. Pasupathi, J. Nonlinear Opt. Phys. Mater. 22, 1350043 (2013). https://doi.org/10.1142/S0218863513500434

    Article  ADS  Google Scholar 

  18. N. Zaitseva, L. Carman, A. Glenn, J. Newby, M. Faust, S. Hamel, N. Cherepy, S. Payne, J. Cryst. Growth 314, 163–170 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.139

    Article  ADS  Google Scholar 

  19. B.F. Pedersen, Acta. Chem. Scand. 22, 2953–2964 (1968). https://doi.org/10.3891/acta.chem.scand.22-2953

    Article  Google Scholar 

  20. G.M. Sheldrick, Acta. Cryst. C 71, 3–8 (2015). https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  21. F.H. Moore, L.F. Power, Inorg. Nucl. Chem. Lett. 7, 873–875 (1971). https://doi.org/10.1016/0020-1650(71)80266-0

    Article  Google Scholar 

  22. P. Anandan, R. Jayavel, J. Cryst. Growth 322, 69–73 (2011). https://doi.org/10.1016/j.jcrysgro.2011.02.021

    Article  ADS  Google Scholar 

  23. S. Sathishkumar, J. Cryst. Growth 526, 125234 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125234

    Article  Google Scholar 

  24. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Solidi 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  Google Scholar 

  25. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, New York, 1987)

    Google Scholar 

  26. G. Pasupathi, K. Murugadoss, M. Senthilkumar, C. Ramachandraraja, Optik 125, 3389–3392 (2014). https://doi.org/10.1016/j.ijleo.2013.12.086

    Article  ADS  Google Scholar 

  27. P. Era, R.M. Jauhar, P. Murugakoothan, Opt. Mater. 99, 109558 (2020). https://doi.org/10.1016/j.optmat.2019.109558

    Article  Google Scholar 

  28. R. Hanumantharao, S. Kalainathan, J. Therm. Anal. Calorim. 114, 239–243 (2013). https://doi.org/10.1007/s10973-012-2925-y

    Article  Google Scholar 

  29. A. Subashini, K. Rajarajan, S. Sagadevan, P. Singh, J. Podder, J. Therm. Anal. Calorim. 131, 2179–2186 (2018). https://doi.org/10.1007/s10973-017-6829-8

    Article  Google Scholar 

  30. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  ADS  Google Scholar 

  31. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118–119 (1961)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF IIT MADRAS for providing single-crystal XRD analysis, SAIF—Sophisticated Test and Instrumentation Centre, Cochin for providing optical and thermal analysis. The authors acknowledge Prof. P.K. Dass, Department of Inorganic and Physical Chemistry, IISc Bangalore for extending the facilities for the SHG measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Jananakumar, D. Growth, structural, optical and thermal studies of semi-organic nonlinear optical potassium hydrogen oxalate single crystal. Appl. Phys. A 126, 394 (2020). https://doi.org/10.1007/s00339-020-03571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03571-w

Keywords

Navigation