Skip to main content
Log in

Exploring the potential of l-glutamic acid hydrochloride: growth, characterization, and applications in organic nonlinear optical single crystals for optoelectronic and photonic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semi-organic single l-glutamic acid hydrochloride (LGHCl) single crystals, a nonlinear optical material were grown via the slow solvent evaporation method. The formation of LGHCl crystals was confirmed through the application of Powder X-ray diffraction (PXRD) and FT-IR analysis. The optical quality and bandgap value of the crystal were examined. The second harmonic generation (SHG) conversion efficiency of LGHCl was precisely determined from the implementation of Kurtz–Perry powder technique. The laser damage threshold (LDT) and microhardness properties of LGHCl single crystals were evaluated. LGHCl single crystal's photoconductive sensitivity and temperature-dependent (313–343 K) dielectric behavior were studied. Vickers microhardness analysis was employed to assess the microhardness of generate LGHCl single crystal at room temperature. Using DFT/B3LYP/6-311++G(d,p) theory the optimized geometry, First- and second-order hyperpolarizability and NBO investigations were simulated. Furthermore, density of states (both partial and total) of LGHCl were also determined. The obtained results indicate that the molecule is thermodynamically and optically stable, with a hyperpolarizability that is comparable to other molecules in its class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. H.O. Marcy, L.F. Warren, M.S. Webb, C.A. Ebbers, S.P. Velsko, G.C. Kennedy, G.C. Catella, Appl. Opt. 31, 5051 (1992)

    CAS  Google Scholar 

  2. R.L. Sutherland, Handbook of Nonlinear Optics, 2nd edn. (Dekker, New York, 1996)

    Google Scholar 

  3. M. Krishnakumar, S. Karthick, K. Thirupugalmani, B. Babu, G. Vinitha, Opt. Laser Technol. 101, 91–106 (2018)

    CAS  Google Scholar 

  4. B.A. Fuchs, K. Chaisyn, P. Stephan Velsko, Appl. Opt. 28, 4465–4472 (1989)

    CAS  Google Scholar 

  5. P. Prabukanthan, V. Bhakyajothi, K. Dinakaran, S. Uthayakumar, A. Younis, Chem. Pap. 77, 703–717 (2023)

    CAS  Google Scholar 

  6. P. Prabukanthan, C. Raveendiran, M. Saravana Kumar, G. Harichandran, K. Dinakaran, A.A. Al-Kahtani, M. Ubaidullah, G. Ushanandhini, B. Pandit, Optik 270, 170014 (2022)

    CAS  Google Scholar 

  7. C. Raveendiran, P. Prabukanthan, J. Madhavan, P.A. Vivekanand, N. Arumugam, A.I. Almansour, R.S. Kumar, S.I. Alaqeel, K. Perumal, Green Process. Synth. 11(1), 1148–1162 (2023)

    Google Scholar 

  8. P. Prabukanthan, V. Bhakyajothi, M. Saravana Kumar, G. Harichandran, K. Dinakaran, P. Seenuvasakumaran, J. Mol. Struct. 1246, 131172 (2021)

    CAS  Google Scholar 

  9. P. Prabukanthan, R. Lakshmi, G. Harichandran, C. Sudarsana Kumar, J. Mol. Struct. 1156, 62–73 (2018)

    CAS  Google Scholar 

  10. R. Lakshmi, P. Prabukanthan, G. Harichandran, C. Sudarsana Kumar, Cryst. Res Technol. 54, 1700146 (2019)

    Google Scholar 

  11. P. Prabukanthan, C. Raveendiran, G. Harichandran, P. Seenuvasakumaran, Results Chem. 2, 100083 (2020)

    CAS  Google Scholar 

  12. D.W. Chen, J.J. Yeh, Opt. Lett. 13(10), 808–810 (1988)

    CAS  Google Scholar 

  13. G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage, Appl. Phys. Lett. 5(11), 234–236 (1964)

    CAS  Google Scholar 

  14. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, J. Opt. Soc. Am. B 6(4), 616–621 (1989)

    CAS  Google Scholar 

  15. G.R. Kumar, S.G. Raj, R. Mohan, R. Jayavel, Cryst. Growth Des. 6(6), 1308–1310 (2006)

    CAS  Google Scholar 

  16. S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Rev. Adv. Mater. Sci. 30, 175–183 (2012)

    CAS  Google Scholar 

  17. G. Dematos, V. Venkataraman, E. Nogueria, M. Belsley, P.A. Criado, M.J. Dianezand, E.P. Garrido, Synth. Met. 115, 225–228 (2000)

    Google Scholar 

  18. J. Uma, V. Rajendran, Prog. Nat. Sci. Mater. Int. 26, 24–31 (2016)

    CAS  Google Scholar 

  19. K. Selvaraju, R. Valluvan, S. Kumararaman, Mater. Lett. 13, 1565–1569 (2006)

    Google Scholar 

  20. R. Bairava Ganesh, V. Kannan, R. Sathyalakshmi, P. Ramasamy, Mater. Lett. 3, 706–708 (2007)

    Google Scholar 

  21. M. Aydın, Z. Kartal, S. Osmanoglu, M.H. Baskan, R. Topkaya, J. Mol. Struct. 994, 150–154 (2011)

    Google Scholar 

  22. P.F. FacanhaFilhoa, P.T.C. Freireb, A.O. dos Santosa, L.M. da Silva, Vib. Spectrosc. 72, 15–19 (2014)

    Google Scholar 

  23. C.-Y. Shen, C.-P. Huang, H.-C. Chuo, Sens. Actuators B 84, 231–236 (2002)

    CAS  Google Scholar 

  24. Z. Yan, D. Hou, P. Huang, B. Cao, G. Zhang, Z. Zhou, Meas. Sci. Technol. 19, 015602 (2008)

    Google Scholar 

  25. D.L. Bryce, G.D. Sward, S. Adiga, J. Am. Chem. Soc. 128, 2121–2134 (2006)

    CAS  Google Scholar 

  26. J.R. Yates, C.J. Pickard, M.C. Payne, J. Phys. Chem. A 108, 6032–6037 (2004)

    CAS  Google Scholar 

  27. A.D. Becke, Phys. Rev. A 38, 3098–3100 (1988)

    CAS  Google Scholar 

  28. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)

    CAS  Google Scholar 

  29. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. People, Gaussian 09, Revision B. 01 (Gaussian Inc, Wallingford, 2010)

    Google Scholar 

  30. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold et al., NBO Version 3.1 (TCI, University of Wisconsin, Madison, 1998)

    Google Scholar 

  31. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 98, 899–926 (1988)

    Google Scholar 

  32. B.J. Powell, T. Baruah, N. Bernstein, K. Brake, R.H. McKenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120, 8608–8615 (2004)

    CAS  Google Scholar 

  33. R.G. Parr, W. Yang, Density Functional Theory for Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  34. R.S. Mulliken, J. Chem. Phys. 2, 782–793 (1934)

    CAS  Google Scholar 

  35. R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids (Wiley-VCH, Weinheim, 1997)

    Google Scholar 

  36. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, J. Phys. Chem. A 111, 1358–1361 (2007)

    CAS  Google Scholar 

  37. V. Balachandran, A. Nataraj, T. Karthick, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 114–129 (2013)

    CAS  Google Scholar 

  38. R.G. Parr, L. von Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999)

    CAS  Google Scholar 

  39. P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106, 2065–2091 (2006)

    CAS  Google Scholar 

  40. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793–1873 (2003)

    CAS  Google Scholar 

  41. M.V.S. Prasad, K. Chaitanya, N. UdayaSri, V. Veeraiah, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 99, 379–389 (2012)

    CAS  Google Scholar 

  42. K.S. Thanthiriwatte, K.M. Nalin de Silva, J. Mol. Struct. (Theochem) 617, 169–175 (2002)

    CAS  Google Scholar 

  43. D. Xenides, G. Maroulis, Chem. Phys. Lett. 319, 618–624 (2000)

    CAS  Google Scholar 

  44. M. Senthil Pandian, K. Boopathi, P. Ramasamy, G. Bhagavannarayana, Mater. Res. Bull. 47, 826–835 (2012)

    CAS  Google Scholar 

  45. Y.J. Zhang, Z. Shu, W. Xu, G. Chen, Z.-G. Lic, Acta Crystallogr. 64, 446 (2008)

    Google Scholar 

  46. D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, New York, 1991)

    Google Scholar 

  47. J. Baran, A.J. Barnes, H. Ratajczak, Spectrochim. Acta 51A, 197–214 (1995)

    CAS  Google Scholar 

  48. A. Novak, Struct. Bond. 18, 177–216 (1973)

    Google Scholar 

  49. T. Edsall, H. Scheinberg, J. Chem. Phys. 8, 520–525 (1940)

    CAS  Google Scholar 

  50. M. Narayana Bhat, S.M. Dharmaprakash, J. Cryst. Growth 236, 376–380 (2002)

    Google Scholar 

  51. L.J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1980)

    Google Scholar 

  52. H. Ratajczak, J. Baran, J. Barycki, S. Debrus, M. May, A. Pietraszko, H.M. Ratajczak, A. Tramer, J. Venturini, J. Mol. Struct. 555, 149 (2000)

    CAS  Google Scholar 

  53. S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak, A. Pieraszko, Synth. Met. 127, 99 (2002)

    CAS  Google Scholar 

  54. M. Tsuboi et al., Spectrosc. Acta 19, 271 (1963)

    CAS  Google Scholar 

  55. E. Steger et al., Spectrosc. Acta 19, 293 (1963)

    CAS  Google Scholar 

  56. G. Socrates, Infrared and Raman Characteristic Group Frequencies (Wiley, West London, 2001)

    Google Scholar 

  57. S. George, Infrared and Raman Characteristic Group Wavenumbers, Tables and Charts, 3rd edn. (Wiley, Chichester, 2001)

    Google Scholar 

  58. C. Ravikumar, I. Hubert Joe, V.S. Jayakumar, Chem. Phys. Lett. 460, 552–558 (2008)

    CAS  Google Scholar 

  59. C. Ravikumar, I. Hubert Joe, D. Sajan, Chem. Phys. 369, 1–7 (2010)

    CAS  Google Scholar 

  60. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared spectra of Organic Structure (Wiley, New York, 1999)

    Google Scholar 

  61. G. Treboux, D. Maynau, J.P. Malreu, J. Phys. Chem. 99, 6417–6423 (1995)

    CAS  Google Scholar 

  62. S.E. Wiberley, S.C. Bunce, W.H. Bauer, Anal. Chem. 32, 217 (1960)

    CAS  Google Scholar 

  63. R.D. Hill, G.D. Meakins, (Chemical Society, London, 1958, p. 760).

  64. W.B. Wright Jr., Org. Chem. 24, 1362 (1959)

    CAS  Google Scholar 

  65. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, London, 1975)

    Google Scholar 

  66. C.L. McMurry, V. Thornton, Anal. Chem. 24, 318 (1952)

    CAS  Google Scholar 

  67. N.B. Colthup, Opt. Soc. Am. 40, 397 (1950)

    CAS  Google Scholar 

  68. J. Binoy, J.P. Abraham, I. Hubert Joe, V.S. Jayakumar, G.R. Pettit, O.F. Nielsen, J. Raman Spectrosc. 35, 939 (2004)

    CAS  Google Scholar 

  69. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc. 125, 5973 (2003)

    CAS  Google Scholar 

  70. L.J. Bellamy, The Infra-red Spectra of Complex Molecules, vol. 1 (Chapman & Hall, London, 1975)

    Google Scholar 

  71. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11, 11500–11512 (2021)

    CAS  Google Scholar 

  72. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog. Energy 44, 43 (2019)

    Google Scholar 

  73. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28(4), 1258–1262 (2017)

    CAS  Google Scholar 

  74. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. Mater. Electron. 27, 1244–1253 (2016)

    CAS  Google Scholar 

  75. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M. Salavati-Niasari, Arab. J. Chem. 16, 4 (2023)

    Google Scholar 

  76. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy 47(31), 14319–14330 (2022)

    CAS  Google Scholar 

  77. J. Tauc, J. Tauc (eds.), Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  78. M. Krishnakumar, S. Karthick, K. Thirupugalmani, S. Brahadeeswaran, Opt. Mater. 66, 79–93 (2017)

    CAS  Google Scholar 

  79. A. Krishna, N. Vijayan, S. Gupta, K. Thukral, V. Jayaramakrishnan, B. Singh, J. Philip, S. Das, K.K. Maurya, G. Bhagavannarayana, RSC Adv. 4, 56188 (2014)

    CAS  Google Scholar 

  80. M. Krishnakumar, K. Thirupugalmani, S. Brahadeeswaran, Mater. Sci. Pol. 35(2), 313–321 (2017)

    CAS  Google Scholar 

  81. V. Mathew, S. Jacob, C.K. Mahadevan, K.E. Abraham, Phys. B 407, 222–226 (2012)

    CAS  Google Scholar 

  82. P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan, P. Ramasamy, Opt. Mater. 30, 553–564 (2007)

    CAS  Google Scholar 

  83. K. Syed, S. Babu, G. Peramaiyan, M. Nizam Mohideen, R. Mohan, J. Therm. Anal. Calorim. 120, 1337–1345 (2015)

    Google Scholar 

  84. F. Kremer, A. Schoenhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Google Scholar 

  85. S. Nazarath Begum, U. Sankar, T. ChithambraThanu, P. Selvarajan, Optik 125, 1493–1497 (2014)

    CAS  Google Scholar 

  86. R.H. Bube, Photoconductivity of Solids (Wiley Interscience, New York, 1981)

    Google Scholar 

  87. E.M. Onitsch, Microscope 95, 12 (1950)

    CAS  Google Scholar 

  88. T.A. Koopmans, Physica 1, 104–113 (1933)

    CAS  Google Scholar 

  89. P. Politzer, F. Abu-Awwad, Theor. Chem. Acc. 99, 83–84 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, KSA, for funding this work through a research group program under grant number RGP.2/188/44.

Funding

This study was funded by Deanship of Scientific Research at King Khalid University, KSA (Grant No. RGP.2/188/44).

Author information

Authors and Affiliations

Authors

Contributions

Authors MP, PCB, MK contributed to material preparation, material characterization and manuscript preparation. Authors VRMR, WKK, MS contributed to material preparation, data collection and analysis and manuscript preparation conception. SMN, BGS, IMA contributed to data analysis and revised manuscript preparation and funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to M. Parthasarathy, Muthusamy Krishnakumar, Vasudeva Reddy Minnam Reddy or Woo Kyoung Kim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, M., Mani Naidu, S., Chinna Babu, P. et al. Exploring the potential of l-glutamic acid hydrochloride: growth, characterization, and applications in organic nonlinear optical single crystals for optoelectronic and photonic devices. J Mater Sci: Mater Electron 34, 1457 (2023). https://doi.org/10.1007/s10854-023-10824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10824-w

Navigation