Skip to main content
Log in

Biopolymer-based trimetallic nanocomposite synthesis, characterization and its application in the catalytic degradation of 4-nitrophenol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gum kondagogu (GK), a natural biopolymer was successfully employed in the synthesis of trimetallic (AgAuPd) nanocomposites and characterized for their physicochemical properties in comparison with the monometallic nanoparticles. The UV–visible spectrum of GK-Ag nanoparticles (NPs) and GK-AuNPs showed distinctive surface plasmon peaks at 418 and 546 nm, respectively. In contrast, GK-PdNPs and the trimetallic nanoparticles did not exhibit any specific absorbance within the region of 200–800 nm. Fourier-transform infrared spectroscopy revealed that hydroxyl, acetyl, and carboxylate functional groups are responsible for the formation of GK-NPs. The scanning electron microscopy and energy dispersive X-ray analysis depicted the surface morphology and elemental composition of GK-based nanoparticles in comparison with native gum. Further, the GK-trimetallic nanocomposite was crystalline in nature with face-centered cubic geometry based on X-ray diffraction analysis and oxidation state zero as analyzed by X-ray photoelectron spectroscopy. The zeta potential (mV) for the GK-AgAuPdNPs was recorded as − 4.97 ± 1.25 when compared to native gum − 25.25 ± 2.64. The transmission electron microscopy analysis displayed the average sizes for GK-AgNPs (13 ± 4.8 nm), GK-AuNPs (8 ± 3.0 nm), GK-PdNPs (6 ± 1.1 nm), and the trimetallic GK-AgAuPdNPs (28 ± 8.1 nm). The synthesized GK-NPs exhibited enhanced catalytic efficiencies in the reduction of an anthropogenic agent 4-nitrophenol (4-NP) by NaBH4 to 4-aminophenol with rate constants k (min−1) 0.180 for (GK-AgNPs), 0.158 (GK-AuNPs), 0.293 (GK-PdNPs), and 0.287 (GK-AgAuPdNPs). Our findings disclosed that GK-trimetallic NPs are more efficient catalysts in the reduction of 4-NP as compared to monometallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.J.S. Costa, L.M. Rossi, Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale 4, 5826–5834 (2012)

    Article  CAS  Google Scholar 

  2. P. Dauthal, M. Mukhopadhyay, Noble metal nanoparticles: plant mediated synthesis, mechanistic aspects of synthesis and applications. Ind. Eng. Chem. Res. 55, 9557–9577 (2016)

    Article  CAS  Google Scholar 

  3. I. Ijaz, E. Gilani, A. Nazir, A. Bukhari, Detail review on chemical, physical and green synthesis, classification, characterizations, and applications of nanoparticles. Green. Chem. Lett. Rev. 13, 223–245 (2020)

    Article  CAS  Google Scholar 

  4. P. Anastas, N. Eghbali, Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010)

    Article  CAS  Google Scholar 

  5. H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792 (2015)

    Article  CAS  Google Scholar 

  6. V.T.P. Vinod, R.B. Sashidhar, V.U.M. Sarma, U.V.R. Vijaya Saradhi, Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India. J. Agric. Food. Chem. 56, 2199–2207 (2008)

    Article  CAS  Google Scholar 

  7. I. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, G. Rajakumar, Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale. Res. Lett. 11, 40 (2016)

    Article  Google Scholar 

  8. M. Goudarzi, N. Mir, M. Mousavi-Kamazani, S. Bagheri, M. Salavati-Niasari, Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep. 6, 32539 (2016)

    Article  CAS  Google Scholar 

  9. Y. Zhong, C. Deng, Y. He, Y. Ge, G. Song, Glutathione-protected silver nanoclusters for sensing trace-level Hg2+ in a wide pH range. Anal. Methods 7, 1558–1562 (2015)

    Article  CAS  Google Scholar 

  10. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009)

    Article  CAS  Google Scholar 

  11. N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018)

    Article  CAS  Google Scholar 

  12. X. Hu, Y. Zhang, T. Ding, J. Liu, H. Zhao, Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 8, 990 (2020)

    Article  Google Scholar 

  13. N. Tepale, V.V.A. Fernández-Escamilla, C. Carreon-Alvarez, V.J. González-Coronel, A. Luna-Flores, A. Carreon-Alvarez, J. Aguilar, Nanoengineering of gold nanoparticles: green synthesis, characterization, and applications. Crystals 9, 612 (2019)

    Article  CAS  Google Scholar 

  14. L. Biao, S. Tan, Q. Meng, J. Gao, X. Zhang, Z. Liu, Y. Fu, Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials 8, 53 (2018)

    Article  Google Scholar 

  15. M. Hazarika, D. Borah, P. Bora, A.R. Silva, P. Das, Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS ONE 9, 12 (2017)

    Google Scholar 

  16. V. Kandathil, R.B. Dateer, B.S. Sasidhar, S.A. Patil, S.A. Patil, Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and hiyama cross-coupling reaction under ligand free conditions. Catal. Lett. 148, 1562–1578 (2018)

    Article  CAS  Google Scholar 

  17. F. Qazi, Z. Hussain, M.N. Tahir, Advances in biogenic synthesis of palladium nanoparticles. RSC. Adv. 6, 60277–60286 (2016)

    Article  CAS  Google Scholar 

  18. P. Vishnukumar, S. Vivekanandhan, S. Muthuramkumar, Plant-mediated biogenic synthesis of palladium nanoparticles: recent trends and emerging opportunities. Chem. Bio. Eng. Rev. 4, 18–36 (2017)

    Google Scholar 

  19. A.J. Kora, L. Rastogi, Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab. J. Chem. 11, 1097–1106 (2018)

    Article  CAS  Google Scholar 

  20. J. Jana, M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016)

    Article  CAS  Google Scholar 

  21. G. Sharma, D. Kumar, A. Kumar, A.H. Al-Muhtaseb, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mat. Sci. Eng. C. 71, 1216–1230 (2017)

    Article  CAS  Google Scholar 

  22. K. Pyrzynska, Nanomaterials in speciation analysis of metals and metalloids. Talanta 212, 120784 (2020)

    Article  CAS  Google Scholar 

  23. H.B. Ahmed, H.E. Emam, Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polym. Test. 89, 106720 (2020)

    Article  CAS  Google Scholar 

  24. R.B. Sashidhar, S.K. Selvi, V.T.P. Vinod, K. Tanuja, D. Raju, R. Karuna, Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents. J. Environ. Radioact. 148, 33–41 (2015)

    Article  CAS  Google Scholar 

  25. K.Y. Cho, H.Y. Seo, Y.S. Yeom, P. Kumar, A.S. Lee, K. Baek, H.G. Yoon, Stable 2D-structured supports incorporating ionic block copolymer-wrapped carbon nanotubes with graphene oxide toward compact decoration of metal nanoparticles and high-performance nano-catalysis. Carbon 105, 340–352 (2016)

    Article  CAS  Google Scholar 

  26. B. Khodadadi, M. Bordbar, A. Yeganeh-Faal, M. Nasrollahzadeh, Green synthesis of Ag nanoparticles/clinoptilolite using Vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes. J. Alloys Compd. 719, 82–88 (2017)

    Article  CAS  Google Scholar 

  27. M. Tajbakhsh, H. Alinezhad, M. Nasrollahzadeh, T.A. Kamali, Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: a recoverablecatalyst for reduction of organic dyes. J. Alloys Compd. 685, 258–265 (2016)

    Article  CAS  Google Scholar 

  28. A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO and Au@ ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J. Mater. Res. Technol. 9, 3241–3248 (2020)

    Article  CAS  Google Scholar 

  29. A. Mostafa, E. Mwafy, N. Awwad, H. Ibrahium, Catalytic activity of Ag nanoparticles and Au/Ag nanocomposite prepared by pulsed laser ablation technique against 4-nitrophenol for environmental applications. J. Mater. Sci. Mater. Electron. 32, 11978–11988 (2021)

    Article  CAS  Google Scholar 

  30. M.A. Zakria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interfaces 19, 100438 (2020)

    Article  Google Scholar 

  31. B. Jaleh, M. Nasrollahzadeh, A. Nasri, M. Eslamipanah, A. Moradi, Z. Nezafat, Biopolymer-derived (nano)catalysts for hydrogen evolution via hydrolysis of hydrides and electrochemical and photocatalytic techniques: a review. Int. J. Biol. Macromol. 182, 1056–1090 (2021)

    Article  CAS  Google Scholar 

  32. J. Arjomandi, N.K.I. Mossa, B. Jaleh, Electrochemical synthesis and In situ spectroelectrochemistry of conducting NMPy-TiO2 and ZnO polymer nanocomposites for Li secondary battery applications. J. Appl. Polym. Sci. 132, 41526 (2015)

    Article  Google Scholar 

  33. V.T.P. Vinod, P. Saravanan, B. Sreedhar, D.K. Devi, R.B. Sashidhar, A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. B. 83, 291–298 (2011)

    Article  CAS  Google Scholar 

  34. K.V. Pasha, C.V. Ratnavathi, J. Ajani, D. Raju, S.M. Kumar, S.R. Beedu, Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India. J. Sci. Food. Agric. 98, 652–660 (2017)

    Article  Google Scholar 

  35. L. Rastogi, S.R. Beedu, A.J. Kora, Facile synthesis of palladium nanocatalysts using gum kondagogu (Cochlospermum gossypium): a natural biopolymer. IET Nanobiotechnology 9, 362 (2015)

    Article  Google Scholar 

  36. S. Velpula, S.R. Beedu, K. Rupula, Bimetallic nanocomposite (Ag-Au, Ag-Pd, Au-Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol. Int. J. Biol. Macromol. 190, 159–169 (2021)

    Article  CAS  Google Scholar 

  37. N. Berahim, W.J. Basirun, B.F. Leo, M.R. Johan, Synthesis of bimetallic gold-silver (Au-Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 8, 412 (2018)

    Article  Google Scholar 

  38. L. Rastogi, R.B. Sashidhar, D. Karunasagar, J. Arunachalam, Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111–117 (2014)

    Article  CAS  Google Scholar 

  39. D. Muchintala, V. Suresh, D. Raju, R.B. Sashidhar, Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. Mater. Sci. Eng. C. 110, 110712 (2020)

    Article  CAS  Google Scholar 

  40. J. Singh, T. Dutta, K. Kim, M. Rawat, P. Samddar, P. Kumar, Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)

    Article  CAS  Google Scholar 

  41. P. Venkatesan, J. Santhanalakshmi, Synthesis and characterization of surfactant stabilized trimetallic Au-Ag-Pd nanoparticles for heck coupling reaction. Phys. Chem. 2, 12–15 (2012)

    Article  CAS  Google Scholar 

  42. H.B. Ahmed, H.E. Emam, Layer by layer assembly of nanosilver for high performance cotton fabrics. Fibers Polym. 17, 418–426 (2016)

    Article  CAS  Google Scholar 

  43. H.E. Emam, Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J. Polym. Environ. 27, 210–223 (2019)

    Article  CAS  Google Scholar 

  44. H.E. Emam, M.A. Attia, F.M.S.E. El-Dars, H.B. Ahmed, Emerging use of homogenic and heterogenic nano-colloids synthesized via size-controllable technique in catalytic potency. J. Polym. Environ. 28, 553–565 (2020)

    Article  CAS  Google Scholar 

  45. B. Janaki, R.B. Sashidhar, Subchronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermum gossypium). Food Chem. Toxicol. 38, 523–534 (2000)

    Article  CAS  Google Scholar 

  46. H.B. Ahmed, H.E. Emam, Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (Ag\\Au, Au\\Pd) versus trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J. Mol. Liq. 287, 110975 (2019)

    Article  CAS  Google Scholar 

  47. S. Tsai, Y.-H. Liu, P. Wu, C. Yeh, Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J. Mater. Chem. 13, 978–980 (2003)

    Article  CAS  Google Scholar 

  48. Y.M. Mohan, K.M. Raju, K. Sambasivudu, S. Singh, B. Sreedhar, Preparation of acacia-stabilized silver nanoparticles: a green approach. J. Appl. Polym. Sci. 106, 3375–3381 (2007)

    Article  CAS  Google Scholar 

  49. K. Suwannarat, K. Thongthai, S. Ananta, L. Srisombat, Synthesis of hollow trimettallic Ag/Au/Pd nanoparticles for reduction of 4-nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 540, 73–80 (2018)

    Article  CAS  Google Scholar 

  50. H. Tan, T. Zhan, W.Y. Fan, A simple route to water-soluble size-tunable monodispersed Pd nanoparticles from the light decomposition of Pd(PPh3)4. Chem. Phys. Lett. 428, 352–355 (2006)

    Article  CAS  Google Scholar 

  51. Y. Suo, I. Hsing, Synthesis of bimetallic PdAu nanoparticles for formic acid oxidation. Electrochim. Acta 56, 2174–2183 (2011)

    Article  CAS  Google Scholar 

  52. S. Li, Y. Ping, J. Yan, H. Wang, M. Wu, Q. Jiang, Facile synthesis of AgAuPd/Graphene with high performance for hydrogen generation from formic acid. J. Mater. Chem. A 3, 14535–14538 (2011)

    Article  Google Scholar 

  53. A.J. Kora, S.R. Beedu, A. Jayaraman, Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2, 17 (2012)

    Article  Google Scholar 

  54. T.S. Rodrigues, A.G.M. da Silva, P.H.C. Camargo, Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 7, 5857–5874 (2019)

    Article  CAS  Google Scholar 

  55. T. Li, S. Vongehr, S. Tang, Y. Dai, X. Huang, X. Meng, Scalable synthesis of Ag networks with optimized sub-monolayer Au-Pd nanoparticle covering for highly enhanced SERS detection and catalysis. Sci. Rep. 6, 37092 (2016)

    Article  CAS  Google Scholar 

  56. C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010)

    Article  CAS  Google Scholar 

  57. M. Liang, L. Wang, R. Su, W. Qi, M. Wang, Y. Yu, Z. He, Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catal. Sci. Technol. 3, 1910–1914 (2013)

    Article  CAS  Google Scholar 

  58. A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27, 15268–15274 (2011)

    Article  Google Scholar 

  59. H.I. Salaheldin, Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes. Adv. Nat. Sci: Nanosci. Nanotechnol. 8, 045002 (2018)

    Google Scholar 

  60. T. Pradeep, Anshup, Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517, 6441–6478 (2009)

    Article  CAS  Google Scholar 

  61. H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, H.E. Arroussi, M. Zahouily, Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activity through a bifunctional Ag/ZnO nanohybrid material prepared via a sodium alginate method. Nanoscale Adv. 1, 3151–3163 (2019)

    Article  CAS  Google Scholar 

  62. P. Dauthal, M. Mukhopadhyay, Biosynthesis of palladium nanoparticles using delonix regia leaf extract and its catalytic activity for nitro-aromatics hydrogenation. Ind. Eng. Chem. Res. 52, 18131–18139 (2013)

    Article  CAS  Google Scholar 

  63. A.S. Kumari, M. Venkatesham, D. Ayodhya, G. Veerabhadram, Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl. Nanosci. 5, 315–320 (2015)

    Article  Google Scholar 

  64. K. Kalantari, A.B.M. Afifi, S. Bayat, K. Shameli, S. Yousefi, N. Mokhtar, A. Kalantari, Heterogeneous catalysis in 4-nitrophenol degradation and antioxidant activities of silver nanoparticles embedded in Tapioca starch. Arab. J. Chem. 12, 5246–5252 (2019)

    Article  CAS  Google Scholar 

  65. S.J.M. Gavade, G.H. Nikam, S.R. Sabale, B.V. Tamhankar, Green synthesis of fluorescent silver nanoparticles using Acacia nilotica gum extract for kinetic studies of 4-nitrophenol reduction. Mater. Today. 3, 4109–4114 (2016)

    Google Scholar 

  66. R.R. Palem, G. Shimoga, T.J. Kang, S. Lee, Fabrication of multifunctional guar gum-silver nanocomposite hydrogels for biomedical and environmental applications. Int. J. Biol. Macromol. 159, 474–486 (2020)

    Article  CAS  Google Scholar 

  67. Y.S. Seo, E. Ahn, J. Park, T.Y. Kim, J.E. Hong, K. Kim, Y. Park, Y. Park, Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res. Lett. 12, 7 (2017)

    Article  Google Scholar 

  68. G. Wu, X. Liu, P. Zhou, L. Wang, M. Hegazy, X. Huang, Y. Huang, A facile approach for the reduction of 4-nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles. Mater. Sci. Eng. C. 94, 524–533 (2019)

    Article  CAS  Google Scholar 

  69. M. Khoshnamvand, Z. Hao, C. Huo, J. Liu, Photocatalytic degradation of 4-nitrophenol pollutant and in vitro antioxidant assay of gold nanoparticles synthesized from Apium graveolens leaf and stem extracts. Int. J. Environ. Sci. Technol. 17, 2433–2442 (2020)

    Article  CAS  Google Scholar 

  70. A.I. Ayad, D. Luart, A.O. Dris, E. Guénin, Kinetic analysis of 4-nitrophenol reduction by “water-soluble” palladium nanoparticles. Nanomaterials 10, 1169 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology (DST), New Delhi for providing infrastructural facilities under PURSE programs phase-I & II at Osmania University, Hyderabad. Mr. Velpula Suresh would like to thank the University Grants Commission (UGC), New Delhi for awarding Basic Scientific Research (BSR) fellowship (JRF and SRF) at the Department of Biochemistry, Osmania University.

Author information

Authors and Affiliations

Authors

Contributions

SV: Investigation, methodology, acquisition of data, analysis, and interpretation of data, drafting the article. SRB: The conception of the idea, and introducing novel biopolymer for development of metal nanocomposites; In addition, to reviewing the study critically for important intellectual inputs. KR: The conception and design of the study, critically reviewing experimental data, research supervision and administration, final approval of the version to be submitted.

Corresponding author

Correspondence to Karuna Rupula.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velpula, S., Beedu, S.R. & Rupula, K. Biopolymer-based trimetallic nanocomposite synthesis, characterization and its application in the catalytic degradation of 4-nitrophenol. J Mater Sci: Mater Electron 33, 2677–2698 (2022). https://doi.org/10.1007/s10854-021-07476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07476-z

Navigation