Skip to main content
Log in

Emerging Use of Homogenic and Heterogenic Nano-colloids Synthesized via Size-Controllable Technique in Catalytic Potency

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The current work demonstrate a controllable technique for synthesis of silver nanoparticles and gold nanoparticles versus their bimetallic nano-alloy as homogenic and heterogenic nano-colloids and monitoring their employment as nano-catalysts. The required nano-colloids were spontaneously in-grained by using carboxymethyl methyl cellulose (CMC) as nano-generator and protector. Revolution of UV–Vis spectroscopic data affirmed that, surface plasmon resonance (SPR) peak characterized for Ag-Au bimetallic nano-alloys was ranged in 480–495 nm and X-ray diffraction patterns also approved the main role of CMC in production of bimetallic nanostructures. Transmission electron microscope (TEM) and zetasizer analyses were detected for monitoring the effect of reaction conditions on the topographical features and size distribution of the as-generated nano-colloids. Small sized Ag monometallic of 9.7 nm was enlarged to 16.8–34.2 nm for Ag–Au bimetallic nanostructures. The catalytic potency of the produced nano-colloids was monitored for the reduction of p-nitroaniline and the results revealed that, there was a quite strong relationship between catalytic activity and composition of nano-colloids. Half time of the reduction was sharply decreased from 22.95 to 5.27 min for Ag monometallic and Ag–Au bimetallic nano-colloids, respectively. Using of the bimetallic nanostructure as nano-catalyst could be beneficial for accelerating the reduction reaction 23 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ceylan A, Jastrzembski K, Shah SI (2006) Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A 37(7):2033–2038

    Google Scholar 

  2. Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Coll Interface Sci 229:80–107

    CAS  Google Scholar 

  3. Ferrando R (2014) Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys: Condens Matter 27(1):013003

    Google Scholar 

  4. Toshima N, Lu P (1996) Synthesis and catalysis of colloidal dispersions of Pd/Ni bimetallic clusters. Chem Lett 25(9):729–730

    Google Scholar 

  5. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    CAS  PubMed  Google Scholar 

  6. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201

    CAS  Google Scholar 

  7. Hu J-W, Li J-F, Ren B, Wu D-Y, Sun S-G, Tian Z-Q (2007) Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J Phys Chem C 111(3):1105–1112

    CAS  Google Scholar 

  8. Link S, Wang ZL, El-Sayed M (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533

    CAS  Google Scholar 

  9. Sagitha P, Sarada K, Muraleedharan K (2016) One-pot synthesis of poly vinyl alcohol (PVA) supported silver nanoparticles and its efficiency in catalytic reduction of methylene blue. Trans Nonferrous Met Soc China 26(10):2693–2700

    CAS  Google Scholar 

  10. Toshima N, Harada M, Yamazaki Y, Asakura K (1992) Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J Phys Chem 96(24):9927–9933

    CAS  Google Scholar 

  11. Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101(36):7033–7037

    CAS  Google Scholar 

  12. Kan C, Cai W, Li C, Zhang L, Hofmeister H (2003) Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J Phys D 36(13):1609

    CAS  Google Scholar 

  13. Vasquez Y, Luo Z, Schaak RE (2008) Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals. J Am Chem Soc 130(36):11866–11867

    CAS  PubMed  Google Scholar 

  14. Ueji M, Harada M, Kimura Y (2008) Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids. J Colloid Interface Sci 322(1):358–363

    CAS  PubMed  Google Scholar 

  15. Harpeness R, Gedanken A (2004) Microwave synthesis of core–shell gold/palladium bimetallic nanoparticles. Langmuir 20(8):3431–3434

    CAS  PubMed  Google Scholar 

  16. Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, De Keyzer R (1998) Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution. J Phys Chem B 102(22):4310–4321

    CAS  Google Scholar 

  17. Hund J, Bertino M, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13

    CAS  Google Scholar 

  18. Schmid G, Lehnert A, Malm JO, Bovin JO (1991) Ligand-stabilized bimetallic colloids identified by HRTEM and EDX. Angew Chem Int Ed Engl 30(7):874–876

    Google Scholar 

  19. Lee P, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    CAS  Google Scholar 

  20. Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7(12):2582–2587

    CAS  Google Scholar 

  21. Ahmed HB, Attia MA, El-Dars FM, Emam HE (2019) Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol 128:214–229

    CAS  PubMed  Google Scholar 

  22. Ahmed HB, Emam HE (2019) Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (AgAu, AuPd) versus Trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J Mol Liquids 287:110975

    CAS  Google Scholar 

  23. Downing R, Kunkeler P, Van Bekkum H (1997) Catalytic syntheses of aromatic amines. Catal Today 37(2):121–136

    CAS  Google Scholar 

  24. Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136

    CAS  Google Scholar 

  25. Oko DN, Zhang J, Garbarino S, Chaker M, Ma D, Tavares AC, Guay D (2014) Formic acid electro-oxidation at PtAu alloyed nanoparticles synthesized by pulsed laser ablation in liquids. J Power Sources 248:273–282

    CAS  Google Scholar 

  26. Carnes CL, Klabunde KJ (2000) Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir 16(8):3764–3772

    CAS  Google Scholar 

  27. Devi GS, Subrahmanyam VB, Gadkari S, Gupta S (2006) NH3 gas sensing properties of nanocrystalline ZnO based thick films. Anal Chim Acta 568(1–2):41–46

    CAS  PubMed  Google Scholar 

  28. Pal U, Serrano JG, Santiago P, Xiong G, Ucer K, Williams R (2006) Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater 29(1):65–69

    CAS  Google Scholar 

  29. Ren X, Meng X, Tang F (2005) Preparation of Ag–Au nanoparticle and its application to glucose biosensor. Sens Actuators B 110(2):358–363

    CAS  Google Scholar 

  30. Emam HE, El-Zawahry MM, Ahmed HB (2017) One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 166:1–13

    CAS  PubMed  Google Scholar 

  31. Emam HE, Ahmed HB (2018) Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. Int J Biol Macromol 111:999–1009

    CAS  PubMed  Google Scholar 

  32. Abdel-Galil A, Ali H, Atta A, Balboul M (2014) Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Radiat Res Appl Sci 7(1):36–43

    CAS  Google Scholar 

  33. Mott D, Thuy NT, Aoki Y, Maenosono S (2010) Aqueous synthesis and characterization of Ag and Ag–Au nanoparticles: addressing challenges in size, monodispersity and structure. Philos Trans R Soc Lond A 368(1927):4275–4292

    CAS  Google Scholar 

  34. Litvin VA, Minaev BF (2014) The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances. Mater Chem Phys 144(1–2):168–178

    CAS  Google Scholar 

  35. Jiang G, Wang L, Chen W (2007) Studies on the preparation and characterization of gold nanoparticles protected by dendrons. Mater Lett 61(1):278–283

    CAS  Google Scholar 

  36. Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J. https://doi.org/10.1155/2014/938272

    Article  Google Scholar 

  37. Abdelhameed RM, Rehan M, Emam HE (2018) Figuration of Zr-based MOF@ cotton fabric composite for potential kidney application. Carbohydr Polym 195:460–467

    CAS  PubMed  Google Scholar 

  38. Emam HE, El-Hawary NS, Ahmed HB (2017) Green technology for durable finishing of viscose fibers via self-formation of AuNPs. Int J Biol Macromol 96:697–705

    CAS  PubMed  Google Scholar 

  39. Emam HE, Abdelhameed RM (2017) Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)–metal organic framework. ACS Appl Mater Interfaces 9(33):28034–28045

    CAS  PubMed  Google Scholar 

  40. Emam HE, Abdelhameed RM (2017) In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide). J Porous Mater 24(5):1175–1185

    CAS  Google Scholar 

  41. Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196(2–3):247–257

    CAS  Google Scholar 

  42. Tsai S-H, Liu Y-H, Wu P-L, Yeh C-S (2003) Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J Mater Chem 13(5):978–980

    CAS  Google Scholar 

  43. Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82(3):933–941

    CAS  Google Scholar 

  44. Emam HE, El-Bisi M (2014) Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose 21(6):4219–4230

    CAS  Google Scholar 

  45. Ahmed HB, El-Hawary NS, Emam HE (2017) Self-assembled AuNPs for ingrain pigmentation of silk fabrics with antibacterial potency. Int J Biol Macromol 105:720–729

    CAS  PubMed  Google Scholar 

  46. Ahmed HB, Zahran M, Emam HE (2016) Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer. Int J Biol Macromol 91:208–219

    CAS  PubMed  Google Scholar 

  47. Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27(1):210–223

    CAS  Google Scholar 

  48. Emam HE, Zahran M, Ahmed HB (2017) Generation of biocompatible nanogold using H2O2–starch and their catalytic/antimicrobial activities. Eur Polym J 90:354–367

    CAS  Google Scholar 

  49. Ahmed HB, Abdel-Mohsen A, Emam HE (2016) Green-assisted tool for nanogold synthesis based on alginate as a biological macromolecule. Rsc Adv 6(78):73974–73985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossam E. Emam or Hanan B. Ahmed.

Ethics declarations

Conflict of interest

Authors want to declare that no scientific or financial conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emam, H.E., Attia, M.A., El-Dars, F.M.S.E. et al. Emerging Use of Homogenic and Heterogenic Nano-colloids Synthesized via Size-Controllable Technique in Catalytic Potency. J Polym Environ 28, 553–565 (2020). https://doi.org/10.1007/s10924-019-01630-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01630-9

Keywords

Navigation