Skip to main content
Log in

Linker-free chemical preparation of palladium nanoparticles on aluminum-doped zinc oxide electrodes for electrochemical water oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Despite the growing popularity and promising properties of aluminum-doped zinc oxide (AZO) among other transparent conducting oxides (TCOs), modification of AZO with a suitable nano-catalyst can help to enhance its electrocatalytic properties. In this study, the surface of AZO is decorated with palladium nanoparticles (PdNPs) by simply Pd ion capturing on bare AZO from an aqueous solution of K2PdCl4 and successive reduction with NaBH4 to enhance the electrocatalytic properties toward water oxidation. The effect of K2PdCl4 concentration is optimized for optimum PdNPs-modified AZO (PdNPs-AZO) electrodes for electrochemical water oxidation. The surface morphology, elemental composition, and electrical properties of the prepared PdNPs-AZO were examined by field emission scanning electron microscopy, energy dispersive spectroscopy, and four-in-line probe, respectively. The PdNPs-AZO electrodes, prepared with various concentrations of Pd precursors, exhibited a significant change in terms of electrode sheet resistance and resistivity from each other. The electrochemical impedance spectroscopy and cyclic voltammetry were conducted in a 0.1 M NaOH (aq.) solution to achieve quantitative information about the electrodes and electrochemical reactions toward water oxidation. The PdNPs-AZO prepared with 5.0 mM K2PdCl4 exhibited optimum behavior toward water oxidation with the starting oxidation potential of 625.7 mV vs. Ag/AgCl and current density of 13.8 mA cm−2 at 1.5 V vs. Ag/AgCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.B. Jansi, G. Ravi, R. Yuvakkumar, M. Praveenkumar, S. Ravichandran, M.P. Muthu, S.I. Hong, Bi2WO6 and FeWO4 nanocatalysts for the electrochemical water oxidation process. ACS Omega 4, 5241–5253 (2019). https://doi.org/10.1021/acsomega.8b03003

    Article  CAS  Google Scholar 

  2. N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V.S. Batista, W. Liu, X. Sun, Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-03429-z

    Article  Google Scholar 

  3. S. Louis, Z. Andreas, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). https://doi.org/10.1038/35104634

    Article  Google Scholar 

  4. J. Ahmed, T. Ahamad, N. Alhokbany, B.M. Almaswari, T. Ahmad, A. Hussain, E.S.S. Al-Farraj, S.M. Alshehri, Molten salts derived copper tungstate nanoparticles as bifunctional electro-catalysts for electrolysis of water and supercapacitor applications. ChemElectroChem 5, 3938–3945 (2018). https://doi.org/10.1002/celc.201801196

    Article  CAS  Google Scholar 

  5. C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Gratzel, X. Hu, Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4059

    Article  Google Scholar 

  6. R.I. Pinhassi, D. Kallmann, G. Saper, H. Dotan, A. Linkov, A. Kay, V. Liveanu, G. Schuster, N. Adir, A. Rothschild, Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7, 12552 (2016). https://doi.org/10.1038/ncomms12552

    Article  CAS  Google Scholar 

  7. S.M. Alshehri, J. Ahmed, T. Ahamad, N. Alhokbany, P. Arunachalam, A.M. Al-Mayouf, T. Ahmad, Synthesis, characterization, multifunctional electrochemical (OGR/ORR/SCs) and photodegradable activities of ZnWO4 nanobricks. J. Sol-Gel. Sci. Technol. 87, 137–146 (2018). https://doi.org/10.1007/s10971-018-4698-7

    Article  CAS  Google Scholar 

  8. Audichon T., Napporn T.W., Canaff C., Morais C., Comminges C., Kokoh K.B.: IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical Water Splitting. (2016). https://doi.org/10.1021/ACS.JPCC.5B11868

  9. C. Gutsche, C.J. Moeller, M. Knipper, H. Borchert, J. Parisi, T. Plaggenborg, Synthesis, structure, and electrochemical stability of Ir-decorated RuO2 nanoparticles and Pt nanorods as oxygen catalysts. J. Phys. Chem. C 120, 1137–1146 (2016). https://doi.org/10.1021/acs.jpcc.5b11437

    Article  CAS  Google Scholar 

  10. I.A. Buliyaminu, M.A. Aziz, S.S. Shah, A.K. Mohamedkhair, Z.H. Yamani, Preparation of nano-Co3O4-coated Albizia procera-derived carbon by direct thermal decomposition method for electrochemical water oxidation. Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2019.12.013

    Article  Google Scholar 

  11. S.S. Shah, M.A. Aziz, A.K. Mohamedkhair, M.A.A. Qasem, A.S. Hakeem, M.K. Nazal, Z.H. Yamani, Preparation and characterization of manganese oxide nanoparticles coated Albizia procera derived carbon for electrochemical water oxidation. J. Mater. Sci.: Mater. Electron. 30, 16087–16098 (2019). https://doi.org/10.1007/s10854-019-01979-6

    Article  CAS  Google Scholar 

  12. J. Lu, Y. Zeng, X. Ma, H. Wang, L. Gao, H. Zhong, Q. Meng, Cobalt nanoparticles embedded into N-doped carbon from metal organic frameworks as highly active electrocatalyst for oxygen evolution reaction. Polymers (2019). https://doi.org/10.3390/polym11050828

    Article  Google Scholar 

  13. A.J.S. Ahammad, M.M. Hasan, T. Islam, M.O. Al-Shehri, A.N. Anju, M.K. Alam, J.P. Kim, M.A.A. Qasem, M.A. Aziz, Pyrolytic preparation of gold nanoparticle-coated taro carbon and its application for the selective detection of dopamine. New J. Chem. 42, 4543–4552 (2018). https://doi.org/10.1039/c7nj04777k

    Article  CAS  Google Scholar 

  14. Y. Peng, S. Chen, Electrocatalysts based on metal@carbon core@shell nanocomposites: an overview. Green Energy & Environment. 3, 335–351 (2018). https://doi.org/10.1016/J.GEE.2018.07.006

    Article  Google Scholar 

  15. Meduri K.: Carbon-supported transition metal nanoparticles for catalytic and electromagnetic applications. Dissertations and Theses. (2018). https://doi.org/10.15760/etd.6523

  16. M. Gopiraman, I.S. Kim, Carbon nanocomposites: preparation and its application in catalytic organic transformations. Nanocomposites - Recent Evolutions. (2018). https://doi.org/10.5772/INTECHOPEN.81109

    Article  Google Scholar 

  17. E. Arca, K. Fleischer, I.V. Shvets, An alternative fluorine precursor for the synthesis of SnO 2: F by spray pyrolysis. Thin Solid Films 520, 1856–1861 (2012). https://doi.org/10.1016/j.tsf.2011.09.016

    Article  CAS  Google Scholar 

  18. F.O. Bakare, W. Mahfoz, M.A. Aziz, M.N. Shaikh, A.S. Hakeem, M. Oyama, Z.H. Yamani, Preparation and electrochemical properties of a gallium-doped zinc oxide electrode decorated with densely gathered palladium nanoparticles. J. Electrochem. Soc. 163, H24–H29 (2016). https://doi.org/10.1149/2.0461602jes

    Article  CAS  Google Scholar 

  19. Md.A. Aziz, M.I. Ahmed, M. Qamar, M.N. Shaikh, Photoelectrochemical investigation of bare transparent conducting oxides for water oxidation. J. Mater Sci 27(10), 10325–10329 (2016). https://doi.org/10.1007/S10854-016-5116-Y

    Article  Google Scholar 

  20. R.N. Goyal, S. Bishnoi, H. Chasta, M.A. Aziz, M. Oyama, Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan. Talanta 85, 2626–2631 (2011). https://doi.org/10.1016/j.talanta.2011.08.031

    Article  CAS  Google Scholar 

  21. A. Khan, Md.A. Aziz, M. Qamar, Simple and enhanced thermal immobilization of gold nanoparticles on TiO2 coated ITO electrodes for photoelectrochemical water oxidation. ChemistrySelect 2, 7678–7683 (2017). https://doi.org/10.1002/slct.201701648

    Article  CAS  Google Scholar 

  22. Aziz Md.A., Mahfoz W., Nasiruzzaman Shaikh M., Zahir Md.H., Al-Betar A.-R., Oyama M., Theleritis D., Yamani Z.H.: Preparation of Indium Tin Oxide Nanoparticle-modified 3-Aminopropyltrimethoxysilane-functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection. Electroanalysis. 29, 1683–1690 (2017). https://doi.org/10.1002/elan.201700058

  23. Md.A. Aziz, R. Almadi, Z.H. Yamani, Indium Tin Oxide Nanoparticle-modified Glassy Carbon Electrode for Electrochemical Sulfide Detection in Alcoholic Medium. Anal. Sci. 34, 599–604 (2018). https://doi.org/10.2116/analsci.17P586

    Article  Google Scholar 

  24. S. Hussain, K. Akbar, D. Vikraman, M.A. Shehzad, S. Jung, Y. Seo, J. Jung, Cu/MoS2/ITO based hybrid structure for catalysis of hydrazine oxidation. RSC Adv. 5, 15374–15378 (2015). https://doi.org/10.1039/c4ra14048f

    Article  CAS  Google Scholar 

  25. M.A. Aziz, S. Patra, H. Yang, A facile method of achieving low surface coverage of Au nanoparticles on an indium tin oxide electrode and its application to protein detection. Chem Commun. (2008). https://doi.org/10.1039/b808026g

    Article  Google Scholar 

  26. S. Amna, M. Shahrom, S. Azman, M.K. Noo Haida, C.A. Ling, K.M.B. Siti, H. Habsah, M. Dasmawati, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 7, 219–242 (2015). https://doi.org/10.1007/S40820-015-0040-X

    Article  Google Scholar 

  27. M.-C. Li, C.-C. Kuo, S.-H. Chen, C.-C. Lee, Optical and electric properties of aluminum-gallium doped zinc oxide for transparent conducting film. Thin Film Solar Technol. 7409, 74090W (2009). https://doi.org/10.1117/12.825206

    Article  CAS  Google Scholar 

  28. Y.C. Lin, T.Y. Chen, L.C. Wang, S.Y. Lien, Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells. J. Electrochem. Soc. 159, 599–604 (2012). https://doi.org/10.1149/2.108206jes

    Article  CAS  Google Scholar 

  29. K. Zhu, Y. Yang, J. Li, W. Song, Physical properties of Al-doped ZnO and Ga-doped ZnO thin films prepared by direct current sputtering at room temperature. J Wuhan Univ Technol, Mater. Sci. Edn. 32, 85–88 (2017). https://doi.org/10.1007/s11595-017-1563-4

    Article  CAS  Google Scholar 

  30. H.L. Shen, H. Zhang, L.F. Lu, F. Jiang, C. Yang, Preparation and properties of AZO thin films on different substrates. Progress Nat Sci: Mater Int. 20, 44–48 (2010). https://doi.org/10.1016/S1002-0071(12)60005-7

    Article  Google Scholar 

  31. D.S. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25, 15–18 (2000). https://doi.org/10.1557/mrs2000.256

    Article  CAS  Google Scholar 

  32. M. Rubat-du-Merac, Transparent ceramics: materials, processing, properties and applications. Encycloped Mater. (2021). https://doi.org/10.1016/B978-0-12-818542-1.00029-1

    Article  Google Scholar 

  33. D. Gupta, D. Dutta, M. Kumar, P.B. Barman, T. Som, S.K. Hazra, Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces. J. Appl. Phys. 118, 164501 (2015). https://doi.org/10.1063/1.4934521

    Article  CAS  Google Scholar 

  34. M.I. Ahmed, Md.A. Aziz, A. Helal, M.N. Shaikh, Direct electrodeposition of nanogold on gallium-doped zinc oxide by cyclic voltammetry and constant-potential techniques: application to electro-oxidation of sulfite. J. Electrochem. Soc. 163, D277–D281 (2016). https://doi.org/10.1149/2.0461607jes

    Article  CAS  Google Scholar 

  35. Resistivity Measurements of Semiconductor Materials Using the 4200A-SCS Parameter Analyzer and a Four-Point Collinear Probe-Resistivity Measurements of Semiconductor Materials Using the 4200A-SCS Parameter Analyzer and a Four-Point Collinear Probe Application Note. https://d347awuzx0kdse.cloudfront.net/vicomaus/content-file/1kw-60640-0_fourpointcollinear_4200a-scs_an_vicom.pdf. Accessed: 11/8/2021.

  36. K.N. Tonny, R. Rafique, A. Sharmin, M.S. Bashar, Z.H. Mahmood, Electrical, optical and structural properties of transparent conducting Al doped ZnO (AZO) deposited by sol-gel spin coating. AIP Adv. 8, 065307 (2018). https://doi.org/10.1063/1.5023020

    Article  CAS  Google Scholar 

  37. W. Zhang, J. Xiong, L. Liu, X. Zhang, H. Gu, Influence of annealing temperature on structural, optical and electrical properties of AZO/Pd/AZO films. Sol. Energy Mater. Sol. Cells 153, 52–60 (2016). https://doi.org/10.1016/J.SOLMAT.2016.04.015

    Article  CAS  Google Scholar 

  38. I. Feliciano-Ramos, B. Casañas-Montes, M.M. García-Maldonado, C.L. Menéndez, A.R. Mayol, L.M. Díaz-Vázquez, C.R. Cabrera, Assembly of a cost-effective anode using palladium nanoparticles for alkaline fuel cell applications. J. Chem. Educ. 92, 360–363 (2015). https://doi.org/10.1021/ed500230y

    Article  CAS  Google Scholar 

  39. M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583–7598 (2008). https://doi.org/10.1016/J.ELECTACTA.2008.05.046

    Article  Google Scholar 

  40. Q. Wang, J.E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005). https://doi.org/10.1021/jp052768h

    Article  CAS  Google Scholar 

  41. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C. 122, 194–206 (2018). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  42. S. Sarker, A.J.S. Ahammad, H.W. Seo, D.M. Kim, Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation. Int. J. Photoenergy 2014, 1–17 (2014). https://doi.org/10.1155/2014/851705

    Article  CAS  Google Scholar 

  43. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3, 66–98 (2020). https://doi.org/10.1021/ACSAEM.9B01965

    Article  CAS  Google Scholar 

  44. V.C. Diculescu, A.M. Chiorcea-Paquim, O. Corduneanu, A.M. Oliveira-Brett, Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization. J Solid-State Electrochem. 11, 887–898 (2007). https://doi.org/10.1007/s10008-007-0275-7

    Article  CAS  Google Scholar 

  45. Md.A. Haque, Md.R. Akanda, D. Hossain, M.A. Haque, I.A. Buliyaminu, S.I. Basha, M. Oyama, Md.A. Aziz, Preparation and characterization of Bhant leaves-derived nitrogen-doped carbon and its use as an electrocatalyst for detecting ketoconazole. Electroanalysis 32, 528–535 (2020). https://doi.org/10.1002/ELAN.201900474

    Article  CAS  Google Scholar 

  46. R. Karthik, M. Govindasamy, S.M. Chen, T.W. Chen, K.J. Vinoth, A. Elangovan, V. Muthuraj, M.C. Yu, A facile graphene oxide-based sensor for electrochemical detection of prostate anti-cancer (anti-testosterone) drug flutamide in biological samples. RSC Adv. 7, 25702–25709 (2017). https://doi.org/10.1039/c6ra28792a

    Article  CAS  Google Scholar 

  47. M.A. Blommaert, D.A. Vermaas, B. Izelaar, B. Intveen, W.A. Smith, Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes. J. Mater. Chem. A. 7, 19060–19069 (2019). https://doi.org/10.1039/c9ta04592a

    Article  CAS  Google Scholar 

  48. M. Shaban, I. Kholidy, G.M. Ahmed, M. Negem, H.M. Abd El-Salam, Cyclic voltammetry growth and characterization of Sn-Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions. RSC Adv. (2019). https://doi.org/10.1039/c9ra03503f

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support provided by the Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) and King Fahd University of Petroleum and Minerals, KFUPM in utilizing the research facilities for all the reported material characterizations.

Author information

Authors and Affiliations

Authors

Contributions

IAB: Conceptualization, methodology, investigation, data analysis, and original draft preparation. MAA: Conceptualization, methodology, investigation, supervision, reviewing, and editing. SSS: Investigation, data analysis, and reviewing. ZHY: Investigation, supervision, reviewing, and editing.

Corresponding author

Correspondence to Md.Abdul Aziz.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buliyaminu, I.A., Aziz, M., Shah, S.S. et al. Linker-free chemical preparation of palladium nanoparticles on aluminum-doped zinc oxide electrodes for electrochemical water oxidation. J Mater Sci: Mater Electron 33, 1337–1351 (2022). https://doi.org/10.1007/s10854-021-07452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07452-7

Navigation