Skip to main content
Log in

Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronic devices need to work at high temperature in some fields for a long time, peculiarly step soldering technology, primary packaging and flip–chip connections, etc., along with the application of electronic products more and more widely. These phenomena promote the further development of high-temperature solders. Because of the high melting temperatures of Sn-Ag and Sn-Sb, they are suitable for high-temperature fields such as automotive electronics and avionics. In this review, the influences of trace elements and nanoparticles on microstructure, intermetallic components (IMC) growth, mechanical properties, wettability, melting behavior, and creep behavior of Sn-Ag and Sn-Sb solders have been summarized systematically. It was found that the addition of trace elements or nanoparticles into solders to be beneficial in improving the performance of Sn-Ag and Sn-Sb solders. Besides, the melting behavior of the solder at high temperatures can be further improved if Sn-Ag and Sn-Sb are used better as high-temperature solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. H.R. Kotadia, P.D. Howes, H.M. Mannan et al., A review: On the development of low melting temperature Pb-free solders[J]. Microelectron. Reliab. 54(6–7), 1253–1273 (2014)

    Article  CAS  Google Scholar 

  2. M. Zhao, L. Zhang, Z.Q. Liu et al., Structure and properties of Sn-Cu lead-free solders in electronics packaging[J]. Sci. Technol. Adv. Mater. 20(1), 421–444 (2019)

    Article  CAS  Google Scholar 

  3. Z. Liang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles[J]. Mater. Sci. Eng. R. Rep. 82, 1–32 (2014)

    Article  Google Scholar 

  4. S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications [J]. Microelectron. Reliab. 75, 77–95 (2017)

    Article  CAS  Google Scholar 

  5. M.L. Li, L. Zhang, N. Jiang et al., Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review [J]. Mater. Design 197, 109224 (2021)

    Article  CAS  Google Scholar 

  6. Y.B. Park, G.T. Park, B.R. Lee et al., Solder volume effect on electromigration failure mechanism of Cu/Ni/Sn-Ag Microbump [J]. IEEE Trans. Compon. Packaging Manuf. Technol. 99, 1–1 (2020)

    CAS  Google Scholar 

  7. Y. Wang, Y. Wang, L. Ma et al., Effect of Sn grain c -axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater. 49(3), 2159–2163 (2020)

    Article  CAS  Google Scholar 

  8. Z. Yao, S. Jiang, L. Yin et al., Effects of joint height on the interfacial microstructure and mechanical properties of Cu-Cored SAC305 solder joints[J]. J. Electron. Mater. 49(9), 5391–5398 (2020)

    Article  CAS  Google Scholar 

  9. L. Zhang, W.M. Long, F.J. Wang, Microstructures, interface reaction, and properties of Sn–Ag–Cu and Sn–Ag–Cu–0.5CuZnAl solders on Fe substrate[J]. J. Mater. Sci. Mater. Electron. 31(9), 6645–6653 (2020)

    Article  CAS  Google Scholar 

  10. A.K. Gain, L. Zhang, Nanoindentation creep, elastic properties, and shear strength correlated with the structure of Sn-9Zn-0.5nano-Ag alloy for advanced green electronics[J]. Metals 10(9), 1137 (2020)

    Article  CAS  Google Scholar 

  11. Q. Zhang, F. Hu, Z. Song, Transient soldering reaction mechanisms of SnCu solder on CuNi nano conducting layer and fracture behavior of the joint interfaces[J]. J. Electron. Mater. 49(5), 3383–3390 (2020)

    Article  CAS  Google Scholar 

  12. N. Jiang, L. Zhang, W.M. Long et al., Influence of doping Ti particles on intermetallic compounds growth at Sn58Bi/Cu interface during solid–liquid diffusion[J]. J. Mater. Sci.: Mater. Electron. 32(1), 3341–3351 (2021)

    CAS  Google Scholar 

  13. Y. Wei, Y. Liu, L. Zhang et al., Effects of endogenous Al and Zn phases on mechanical properties of Sn58Bi eutectic alloy[J]. Mater. Charact. 175(5), 111089 (2021)

    Article  CAS  Google Scholar 

  14. V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives[J]. Microelectron. Eng. 88(6), 981–989 (2010)

    Article  Google Scholar 

  15. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: Review[J]. Microelectron. Reliab. 52(7), 1306–1322 (2012)

    Article  CAS  Google Scholar 

  16. K. Tatsuya, S. Ikuo, N. Yusuke, Effect of power cycling and heat aging on reliability and IMC growth of Sn-5Sb and Sn-10Sb solder joints[J]. Adv. Mater. Sci. Eng. 2018, 1–6 (2018)

    Google Scholar 

  17. S.W. Chen, C.H. Wang, S.K. Lin et al., Phase diagrams of Pb-free solders and their related materials systems[J]. J. Mater. Sci.: Mater. Electron. 18(1/3), 19–37 (2007)

    CAS  Google Scholar 

  18. Z. Liang, C.W. He, Y.H. Guo et al., Development of SnAg-based lead free solders in electronics packaging—ScienceDirect[J]. Microelectron. Reliab. 52(3), 559–578 (2012)

    Article  Google Scholar 

  19. K. Kobayashi, I. Shohji, H. Hokazono, Tensile and fatigue properties of miniature size specimens of Sn-5Sb lead-free solder[J]. Mater. Sci. Forum 879, 2377–2382 (2017)

    Article  Google Scholar 

  20. M. Hasnine, B. Tolla, N. Vahora, Microstructural evolution and mechanical behavior of high-temperature solders: Effects of high-temperature aging[J]. J. Electron. Mater. 6, 1–11 (2017)

    Google Scholar 

  21. R.M. Shalaby, M. Kamal, E.A.M. Ali et al., Microstructural and mechanical characterization of melt spun process Sn-3.5Ag and Sn-35.Ag-xCu lead-free solders for low cost electronic assembly[J]. Mater. Sci. Eng. A Struct. Mater. 690, 446–452 (2017)

    Article  Google Scholar 

  22. F. Guo, S. Choi, J.P. Lucas et al., Microstructural characterisation of reflowed and isothermally-aged Cu and Ag particulate reinforced Sn-3.5Ag composite solders[J]. Solder. Surf. Mount Technol. 13(1), 7–18 (2001)

    Article  CAS  Google Scholar 

  23. R. Mahmudi, S. Mahin-Shirazi, Effect of Sb addition on the tensile deformation behavior of lead-free Sn–3.5Ag solder alloy[J]. Mater. Design 32(10), 5027–5032 (2011)

    Article  CAS  Google Scholar 

  24. J. Wan, Y. Liu, W. Chen et al., Effect of the addition of In on the microstructural formation of Sn–Ag–Zn lead-free solder[J]. J. Alloy. Compd. 463(1–2), 230–237 (2008)

    Article  CAS  Google Scholar 

  25. J. Peng, Y. Liu, W. Chen et al., Effect of high-temperature annealing on the microstructural formation of Sn–3.7Ag–0.9Zn– x Al lead-free solder[J]. J. Mater. Sci. Mater. Electron. 20(2), 139–143 (2009)

    Article  Google Scholar 

  26. J. Shen, Y.C. Liu, Y.J. Han et al., Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn-3.5Ag lead-free solder[J]. J Electro Mater 35(8), 1672–1679 (2006)

    Article  CAS  Google Scholar 

  27. M. Sobhy, Effects of torsional oscillation on tensile behavior of Sn–3.5wt% Ag alloy with and without adding ZnO nanoparticles[J]. Mater. Sci. Eng. A 610, 237–242 (2014)

    Article  CAS  Google Scholar 

  28. S. Wiese, K.J. Wolter, Microstructure and creep behaviour of eutectic SnAg and SnAgCu solders[J]. Microelectron. Reliab. 44(12), 1923–1931 (2004)

    Article  CAS  Google Scholar 

  29. S. Liu, Z. Hu, J. Xiong et al., Effects of forming processes on the microstructure and solderability of Sn-3.5Ag eutectic solder ribbons as well as the mechanical properties of solder joints[J]. J. Electron. Mater. 46(11), 6737 (2017)

    Article  CAS  Google Scholar 

  30. A.A. El-Daly, A.Z. Mohamad, A. Fawzy et al., Creep behavior of near-peritectic Sn-5Sb solders containing small amount of Ag and Cu[J]. Mater. Sci. Eng. A 528(3), 1055–1062 (2011)

    Article  Google Scholar 

  31. A.A. El-Daly, Y. Swilem, A.E. Hammad, Creep properties of Sn-Sb based lead-free solder alloys[J]. J. Alloy. Compd. 471(1–2), 98–104 (2009)

    Article  CAS  Google Scholar 

  32. A.A. El-Daly, A. Fawzy, A.Z. Mohamad et al., Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu[J]. J. Alloy. Compd. 509(13), 4574–4582 (2011)

    Article  CAS  Google Scholar 

  33. M. Kamal, E.S. Gouda, Decomposition behavior and properties for tin-antimony alloy with bismuth content[J]. Radiat. Eff. Defects Solids 161(7), 427–431 (2006)

    Article  CAS  Google Scholar 

  34. A.R. Geranmayeh, G. Nayyeri, R. Mahmudi, Microstructure and impression creep behavior of lead-free Sn–5Sb solder alloy containing Bi and Ag[J]. Mater. Sci. Eng. A 547, 110–119 (2012)

    Article  CAS  Google Scholar 

  35. R.M. Shalaby, Influence of indium addition on structure, mechanical, thermal and electrical properties of tin–antimony based metallic alloys quenched from melt[J]. J. Alloy. Compd. 480(2), 334–339 (2009)

    Article  CAS  Google Scholar 

  36. M.M. Mansour, G. Saad, L.A. Wahab et al., Indentation creep behavior of thermally aged Sn-5wt%Sb-1.5wt%Ag solder integrated with ZnO nanoparticles[J]. J. Mater. Sci. Mater. Electron. 30, 8348–8357 (2019)

    Article  CAS  Google Scholar 

  37. M.M. Mansour, A. Fawzy, L.A. Wahab et al., Tensile characteristics of Sn–5wt%Sb–1.5wt%Ag reinforced by nano-sized ZnO particles[J]. J. Mater. Sci. Mater. Electron. 30, 4831–4841 (2019)

    Article  CAS  Google Scholar 

  38. M. Sobhy, A.M. El-Refai, A. Fawzy, Effect of graphene oxide nano-sheets (GONSs) on thermal, microstructure and stress–strain characteristics of Sn-5wt% Sb-1wt% Ag solder alloy[J]. J. Mater. Sci. Mater. Electron. 27(3), 2349–2359 (2016)

    Article  CAS  Google Scholar 

  39. E.A. Eid, A.M. Deghady, A.N. Fouda, Enhanced microstructural, thermal and tensile characteristics of heat treated Sn-50Sb-03Cu (SSC-503) Pb-free solder alloy under high pressure[J]. Mater. Sci. Eng. 743, 726–732 (2019)

    Article  CAS  Google Scholar 

  40. M. Dias, T.A. Costa, B.L. Silva et al., A comparative analysis of microstructural features, tensile properties and wettability of hypoperitectic and peritectic Sn-Sb solder alloys[J]. Microelectronics Reliability 81, 150–158 (2018)

    Article  CAS  Google Scholar 

  41. L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm) [J]. J. Mater. Sci. Mater. Electron. 31(1), 2466–2480 (2020)

    Article  CAS  Google Scholar 

  42. J.J. Yu, C.A. Yang, Y.F. Lin et al., Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications[J]. J. Alloy. Compd. 629, 16–21 (2015)

    Article  CAS  Google Scholar 

  43. B. Guo, A. Kunwar, C. Jiang et al., Synchrotron radiation imaging study on the rapid IMC growth of Sn–xAg solders with Cu and Ni substrates during the heat preservation stage[J]. J. Mater. Sci. Mater. Electron. 29(1), 589–601 (2018)

    Article  CAS  Google Scholar 

  44. H. Ma, A. Kunwar, B. Guo et al., Effect of cooling condition and Ag on the growth of intermetallic compounds in Sn-based solder joints[J]. Appl. Phys. A122(12), 1052.1-1052.10 (2016)

    Google Scholar 

  45. C. Yu, J.S. Chen, K.Y. Wang et al., Suppression effect of Cu and Ag on Cu3Sn layer in solder joints[J]. J. Mater. Sci. Mater. Electron. 24(11), 4630–4635 (2013)

    Article  CAS  Google Scholar 

  46. M.O. Alam, Y.C. Chan, Solid-state growth kinetics of Ni3Sn4 at the Sn–3.5Ag solder/Ni interface[J]. J. Appl. Phys. 98(12), 14–485 (2005)

    Article  Google Scholar 

  47. A. Kumar, C. Zhong, Influence of solid-state interfacial reactions on the tensile strength of Cu/electroless Ni–P/Sn–3.5Ag solder joint[J]. Mater. Sci. Eng. A 423(1–2), 175–179 (2006)

    Article  Google Scholar 

  48. J.W. Yoon, J.H. Bang, C.W. Lee et al., Interfacial reaction and intermetallic compound formation of Sn–1Ag/ENIG and Sn–1Ag/ENEPIG solder joints[J]. J. Alloy. Compd. 627, 276–280 (2015)

    Article  CAS  Google Scholar 

  49. S. Tian, Y. Liu, Q. Ma et al., Intermetallics-induced directional growth of Sn whiskers in Sn-3.5Ag coating on Al substrate[J]. Appl. Surf. Sci. 539, 148135 (2021)

    Article  CAS  Google Scholar 

  50. Y. Yao, J. Zhou, F. Xue et al., Interfacial structure and growth kinetics of intermetallic compounds between Sn-3.5Ag solder and Al substrate during solder process[J]. J. Alloy. Compd. 682, 627–633 (2016)

    Article  CAS  Google Scholar 

  51. M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging[J]. J. Mater. Sci. 54(3), 1741–1768 (2019)

    Article  CAS  Google Scholar 

  52. A. Kunwar, H. Ma, H. Ma et al., On the increase of intermetallic compound’s thickness at the cold side in liquid Sn and SnAg solders under thermal gradient[J]. Mater. Lett. 172, 211–215 (2016)

    Article  CAS  Google Scholar 

  53. D.T. Chu, Y.C. Chu, J.A. Lin et al., Growth competition between layer-type and porous-type Cu3Sn in microbumps[J]. Microelectron. Reliab. 79, 32–37 (2017)

    Article  CAS  Google Scholar 

  54. F.Y. Ouyang, Y.P. Su, Growth kinetic of Ag3Sn intermetallic compound in micro-scale Pb-free solder alloys under a temperature gradient[J]. J. Alloy. Compd. 655, 155–164 (2016)

    Article  CAS  Google Scholar 

  55. F.Y. Ouyang, G.L. Hong, Y.R. Hsu et al., Thermomigration in Co/SnAg/Co and Cu/SnAg/Co sandwich structure[J]. Microelectron. Reliab. 97, 16–23 (2019)

    Article  CAS  Google Scholar 

  56. Y.S. Yang, C.J. Yang, F.Y. Ouyang, Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration[J]. J. Alloy. Compd. 674, 331–340 (2016)

    Article  CAS  Google Scholar 

  57. Y.S. Huang, H.Y. Hsiao, C. Chen et al., The effect of a concentration gradient on interfacial reactions in microbumps of Ni/SnAg/Cu during liquid-state soldering[J]. Scripta Mater. 66(10), 741–744 (2012)

    Article  CAS  Google Scholar 

  58. Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates[J]. Microelectron. Reliab. 49(3), 248–252 (2009)

    Article  CAS  Google Scholar 

  59. J.G. Lee, K.N. Subramanian, Microstructural features contributing to enhanced behaviour of Sn-Ag based solder joints[J]. Solder. Surf. Mount Technol. 17(1), 33–39 (2005)

    Article  CAS  Google Scholar 

  60. C.Y. Ho, M.T. Tsai, J.G. Duh et al., Bump height confinement governed solder alloy hardening in Cu/SnAg/Ni and Cu/SnAgCu/Ni joint assemblies[J]. J. Alloy. Compd. 600, 199–203 (2014)

    Article  CAS  Google Scholar 

  61. H.R. Kotadia, O. Mokhtari, M. Bottrill et al., Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates[J]. J. Electron. Mater. 39(12), 2720–2731 (2010)

    Article  CAS  Google Scholar 

  62. M. Lu, D.Y. Shih, S.K. Kang et al., Effect of Zn doping on SnAg solder microstructure and electromigration stability[J]. J. Appl. Phys. 106(5), 1611–1615 (2009)

    Article  Google Scholar 

  63. S. Tikale, K.N. Prabhu, Effect of multiple reflow cycles on the shear strength of nano-Al2O3 particles reinforced Sn3.6Ag lead-free solder alloy[J]. Trans. Indian Inst. Met. 71, 2855–2859 (2018)

    Article  CAS  Google Scholar 

  64. C. Yu, Y. Yang, K. Wang et al., Relation between Kirkendall voids and intermetallic compound layers in the SnAg/Cu solder joints[J]. J. Mater. Sci.: Mater. Electron. 23(1), 124–129 (2012)

    CAS  Google Scholar 

  65. C. Lee, C.Y. Lin, Y.W. Yen, The 260 °C phase equilibria of the Sn–Sb–Cu ternary system and interfacial reactions at the Sn–Sb/Cu joints[J]. Intermetallics 39(35), 1027–1037 (2010)

    Google Scholar 

  66. J.P. Curtulo, M. Dias, F. Bertelli et al., The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates[J]. J. Manuf. Process. 48, 164–173 (2019)

    Article  Google Scholar 

  67. X.N. Du, J.D. Guo, J.K. Shang, Effect of electromigration on interfacial reactions in 90Sn-10Sb Pb-free solder joints[J]. J. Electron. Mater. 38(11), 2398–2404 (2009)

    Article  CAS  Google Scholar 

  68. C.H. Lee, W.T. Chen, C.N. Liao, Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples[J]. J. Alloy. Compd. 509(16), 5142–5146 (2011)

    Article  CAS  Google Scholar 

  69. B.Y. Han, F.L. Sun, T.H. Li et al., Microstructure evolution of Au/SnSb-CuNiAg/(Au)Ni during high temperature aging[J]. Solder. Surf. Mount Technol. 32(2), 57–64 (2020)

    Article  Google Scholar 

  70. T.T. Dele-Afolabi, M. Hanim, M. Norkhairunnisa et al., Growth kinetics of intermetallic layer in lead-free Sn–5Sb solder reinforced with multi-walled carbon nanotubes[J]. J. Mater. Sci.: Mater. Electron. 26(10), 8249–8259 (2015)

    CAS  Google Scholar 

  71. N. Jiang, L. Zhang, Z.Q. Liu et al., Reliability issues of lead-free solder joints in electronic devices[J]. Sci. Technol. Adv. Mater. 20(1), 876–901 (2019)

    Article  CAS  Google Scholar 

  72. B. Yeung, J.W. Jang, Correlation between mechanical tensile properties and microstructure of eutectic Sn-3.5Ag solder[J]. J. Mater. Sci. Lett. 21(9), 723–726 (2002)

    Article  CAS  Google Scholar 

  73. W.M. Chen, P. Mccloskey, S.C. O’Mathuna, Isothermal aging effects on the microstructure and solder bump shear strength of eutectic Sn37Pb and Sn3.5Ag solders[J]. Microelectron. Reliab. 46(5–6), 896–904 (2006)

    Article  CAS  Google Scholar 

  74. H. Rhee, K.N. Subramanian, A. Lee et al., Mechanical characterization of Sn-3.5Ag solder joints at various temperatures[J]. Solder. Surf. Mount Technol. 15(3), 21–26 (2003)

    Article  CAS  Google Scholar 

  75. M.Y. Guo, C.K. Lin, C. Chen et al., Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints - ScienceDirect[J]. Intermetallics 29(10), 155–158 (2012)

    Article  CAS  Google Scholar 

  76. J. Keller, D. Baither, U. Wilke et al., Mechanical properties of Pb-free SnAg solder joints[J]. Acta Mater. 59(7), 2731–2741 (2011)

    Article  CAS  Google Scholar 

  77. I. Shohji, T. Yoshida, T. Takahashi et al., Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity[J]. Mater. Sci. Eng. A 366(1), 50–55 (2004)

    Article  Google Scholar 

  78. D.B. Witkin, Influence of microstructure on quasistatic and dynamic mechanical properties of bismuth-containing lead-free solder alloys-ScienceDirect[J]. Mater. Sci. Eng., A 532(3), 212–220 (2012)

    Article  CAS  Google Scholar 

  79. P. Babaghorbani, S.M.L. Nai, M. Gupta, Development of lead-free Sn-3.5Ag/SnO2 nanocomposite solders[J]. J. Mater. Sci. Mater. Electron. 20(6), 571–576 (2009)

    Article  CAS  Google Scholar 

  80. P. Babaghorbani, S.M.L. Nai, M. Gupta, Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders[J]. J. Alloy. Compd. 478(1–2), 458–461 (2009)

    Article  CAS  Google Scholar 

  81. M. Lederer, A.B. Kotas, G. Khatibi, A lifetime assessment and prediction method for large area solder joints[J]. Microelectron. Reliab. 114, 113888 (2020)

    Article  CAS  Google Scholar 

  82. M.J. Esfandyarpour, R. Mahmudi, Microstructure and tensile behavior of Sn–5Sb lead-free solder alloy containing Bi and Cu[J]. Mater. Sci. Eng., A 530, 402–410 (2011)

    Article  CAS  Google Scholar 

  83. T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa et al., Investigating the effect of isothermal aging on the morphology and shear strength of Sn-5Sb solder reinforced with carbon nanotubes[J]. J. Alloy. Compd. 649, 368–374 (2015)

    Article  CAS  Google Scholar 

  84. A.R. Geranmayeh, R. Mahmudi, M. Kangooie, High-temperature shear strength of lead-free Sn–Sb–Ag/Al2O3 composite solder[J]. Mater. Sci. Eng., A 528(12), 3967–3972 (2011)

    Article  Google Scholar 

  85. O.L. Rocha, T.A. Costa, M. Dias et al., Cellular/dendritic transition, dendritic growth and microhardness in directionally solidified monophasic Sn-2%Sb alloy[J]. Trans. Nonferr. Metal. Soc. China 28(8), 1686 (2018)

    Article  Google Scholar 

  86. E.S. Gouda, E.M. Ahmed, F.A.S. Allah, Electrical and mechanical properties of Sn-5wt.% Sb alloy with annealing temperature[J]. Eur. Phys. J. Appl. Phys. 45(1), 10901 (2009)

    Article  Google Scholar 

  87. K.K. Xu, L. Zhang, L.L. Gao et al., Review of microstructure and properties of low temperature lead-free solder in electronic packaging[J]. Sci. Technol. Adv. Mater. 21(1), 689–711 (2020)

    Article  CAS  Google Scholar 

  88. Z. Xu, A. Sharma, S.J. Lee et al., Effect of soldering temperature on wetting and optical density of dip coated Sn and Sn-3.5Ag solders[J]. Adv. Manuf. Process. 30(1), 127–132 (2015)

    Article  CAS  Google Scholar 

  89. C.Y. Liu, L. Jian, G.J. Vandentop et al., Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer[J]. J. Electron. Mater. 30(5), 521–525 (2001)

    Article  CAS  Google Scholar 

  90. V.U. Nayak, K.N. Prabhu, N. Stanford et al., Wetting behavior and evolution of microstructure of Sn-3.5Ag solder alloy on electroplated 304 stainless steel substrates[J]. Trans. Indian Inst. Metal. 65(6), 713–717 (2012)

    Article  CAS  Google Scholar 

  91. L.Y. Hsiao, J.G. Duh, Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x = 0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method[J]. J. Electrochem. Soc. 152(9), J105–J109 (2005)

    Article  CAS  Google Scholar 

  92. Peng L, Fu G. Effects of Ni particle addition on microstructure and properties of SnAg based composite solders[C]// Electronics Packaging Technology Conference. IEEE, 2006.

  93. W. Min, X. Su, An investigation on surface tension of Sn-based lead free solders[J]. J. Mater. Sci.: Mater. Electron. 26(11), 1–7 (2015)

    Google Scholar 

  94. M.M. El-Bahay, M. Mossalamy, M. Mahdy et al., Study of the mechanical and thermal properties of Sn-5 wt% Sb solder alloy at two annealing temperatures[J]. Phys. Status Solidi 198(1), 76–90 (2003)

    Article  CAS  Google Scholar 

  95. J.M. Song, Z.M. Wu, D.A. Huang, Two-stage nonequilibrium eutectic transformation in a Sn–3.5Ag–3In solder[J]. Scr. Mater. 56, 413–416 (2007)

    Article  CAS  Google Scholar 

  96. S.W. Chen, P.Y. Chen, C.H. Wang, Lowering of SnSb alloy melting points caused by substrate dissolution[J]. J. Electron. Mater. 35(11), 1982–1985 (2006)

    Article  CAS  Google Scholar 

  97. E.M.A. Ahmed, M.A. Amin, N. Tubaylah, Evolution of microstructure and physical properties of lead-free Sn–5Sb-Ag rapidly solidified solder alloys[J]. Appl. Phys. A 127(6), 403 (2021)

    Article  CAS  Google Scholar 

  98. E.S. Gouda, Effect of Solidification Conditions on Structure and Properties of Rapidly-Solidified Sn-7.5wt%Sb Alloy[J]. Adv. Manuf. Process. 22(7–8), 842–845 (2007)

    Article  CAS  Google Scholar 

  99. Q.K. Zhang, Z.F. Zhang, In situ observations on creep fatigue fracture behavior of Sn–4Ag/Cu solder joints[J]. Acta Mater. 59(15), 6017–6028 (2011)

    Article  CAS  Google Scholar 

  100. I. Dutta, C. Park, S. Choi, Impression creep characterization of rapidly cooled Sn–3.5Ag solders[J]. Mater. Sci. Eng. A 379(1/2), 401–410 (2004)

    Article  Google Scholar 

  101. D. Taneja, M. Volpert, F. Hodaj, Further insight into interfacial interactions in nickel/liquid Sn–Ag solder system at 230–350 °C[J]. J. Mater. Sci.: Mater. Electron. 28(24), 1–13 (2017)

    Google Scholar 

  102. D. Witkin, Creep behavior of Bi-containing lead-free solder alloys[J]. J. Electron. Mater. 41(2), 190–203 (2012)

    Article  CAS  Google Scholar 

  103. Z.J. Yang, S.M. Yang, H.S. Yu et al., IMC and creep behavior in Lead-free solder joints of Sn-Ag and Sn-Ag-Cu alloy system by SP method[J]. Int. J. Automot. Technol. 15(7), 1137–1142 (2014)

    Article  Google Scholar 

  104. X. Huang, Z. Wang, Y. Yu, Thermomechanical properties and fatigue life evaluation of SnAgCu solder joints for microelectronic power module application[J]. J. Market. Res. 9(3), 5533–5541 (2020)

    CAS  Google Scholar 

  105. F. Guo, J. Lee, K.N. Subramanian, Creep behaviour of composite lead-free electronic solder joints[J]. Solder. Surf. Mount Technol. 15(1), 39–42 (2003)

    Article  CAS  Google Scholar 

  106. L. Zhang, L. Sun, Y.H. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling[J]. J. Mater. Sci.: Mater. Electron. 25(3), 1209–1213 (2014)

    Google Scholar 

  107. M.D. Mathew, H. Yang, S. Movva et al., Creep deformation characteristics of tin and tin-based electronic solder alloys[J]. Metall. and Mater. Trans. A. 36(1), 99–105 (2005)

    Article  Google Scholar 

  108. R. Mahmudi, A. Maraghi, Shear punch creep behavior of cast lead-free solders[J]. Mater. Sci. Eng. A 599, 180–185 (2014)

    Article  CAS  Google Scholar 

  109. R. Mahmudi, A.R. Geranmayeh, M. Allami et al., Effect of homogenization on the indentation creep of cast lead-free Sn-5%Sb solder alloy[J]. J. Electron. Mater. 36(12), 1703–1710 (2007)

    Article  CAS  Google Scholar 

  110. A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn-5% Sb solder alloy[J]. J. Mater. Sci. 40(13), 3361–3366 (2005)

    Article  CAS  Google Scholar 

  111. R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, Impression creep behavior of lead-free Sn–5Sb solder alloy[J]. Mater. Sci. Eng., A 448(1–2), 287–293 (2007)

    Article  Google Scholar 

  112. Y. Park, J.H. Bang, C.M. Oh et al., The effect of eutectic structure on the creep properties of Sn-3.0Ag-0.5Cu and Sn-8.0Sb-3.0Ag solders[J]. Multidiscip. Digital Publish. Inst. 7(12), 540 (2017)

    Google Scholar 

  113. Z. Liang, S.B. Xue, L.L. Gao et al., Development of Sn–Zn lead-free solders bearing alloying elements[J]. J. Mater. Mater. Electron. 21(1), 1–15 (2010)

    Article  CAS  Google Scholar 

  114. S.L. Tay, A. Haseeb, M.R. Johan, Addition of cobalt nanoparticles into Sn-3.8Ag-0.7Cu lead-free solder by paste mixing[J]. Solder. Surf. Mount Technol. 23(1), 10–14 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was under support of Natural Science Foundation of Jiangsu Province (BK20211351), the Key project of State Key Laboratory of Advanced Welding and Joining (AWJ-19Z04).

Author information

Authors and Affiliations

Authors

Contributions

Xi Wang involved in data curation and writing—original draft preparation. Liang Zhang and Mu-lan Li participated in writing—reviewing and editing.

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, L. & Li, Ml. Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: a review. J Mater Sci: Mater Electron 33, 2259–2292 (2022). https://doi.org/10.1007/s10854-021-07437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07437-6

Navigation