Skip to main content
Log in

Bubble formation and growth during Transient Liquid Phase Bonding in Cu/SnAg system for microelectronic packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we study the Transient Liquid Phase Bonding (TLPB) for flip chip interconnexion using copper pillar and SnAg solder alloy technologies. Cu and SnAg bumps with a size of 90 × 90 µm2 were deposited using electroplating process with a thickness of 20 µm and 15–30 µm, respectively. Two types of Cu were deposited: with or without additives. Before the TLPB process, soldering experiments with or without pre-reflow were carried out at 250 °C in order to insure a good filling of the joint. Afterwards, isothermal holdings up to 4 h were performed in the temperature range between 250 and 350 °C under air atmosphere. Two main aspects of Cu/SnAg system are studied and analyzed: (i) the evolution of morphology, microstructure, and growth kinetics of intermetallics (IMCs) during the TLPB and especially (ii) the formation and growth of gas bubbles within the liquid solder during TLPB process. Destructive (scanning electron microscopy) and non-destructive (X-ray) characterizations are performed to analyze and understand the evolution of microstructure as well as the formation and evolution of cavities within the joint during the TLPB process. Non-destructive X-ray radiography with 5 µm resolution and 3D X-ray tomography analysis with 0.7 µm resolution were conducted for the same joint at different steps of its evolution between its initial state (just after the soldering process: about 3 min at 250 °C) and 4 h at 250 °C in order to follow “in situ” the evolution of volume defects inside the joint and especially the evolution of gas bubbles within the joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.W. Yoon, M.D. Glover, H.A. Mantooth, K. Shiozaki, Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles. J. Micromech. Microeng. 23(1), 015017 (2012). https://doi.org/10.1088/0960-1317/23/1/015017

    Article  CAS  Google Scholar 

  2. K.E. Aasmundtveit, T.A. Tollefsen, T.-T. Luu, A. Duan, K. Wang, N. Hoivik, Solid–liquid interdiffusion (SLID) bonding—intermetallic bonding for high temperature applications, in 2013 European Microelectronics Packaging Conference (EMPC) (2013), pp. 1–6

  3. N. Heuck, K. Guth, M. Thoben, A. Mueller, N. Oeschler, L. Boewer, R. Speckels, S. Krasel, A. Ciliox, Aging of new interconnect-technologies of power-modules during power-cycling, in CIPS 2014 8th International Conference on Integrated Power Electronics Systems (2014), pp. 1–6

  4. T.-C. Huang, V. Smet, S. Kawamoto, V. Sundaram, P.M. Raj, R.R. Tummala, Modeling, design and demonstration of ultra-short and ultra-fine pitch metastable Cu–Sn interconnections with high-throughput SLID assembly, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). (2015), pp. 1377–1384. https://doi.org/10.1109/ECTC.2015.7159777

    Chapter  Google Scholar 

  5. H. Huebner, S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen, M. Schneegans, Microcontacts with sub-30 μm pitch for 3D chip-on-chip integration. Microelectron. Eng. 83(11), 2155–2162 (2006). https://doi.org/10.1016/j.mee.200-6.09.026

    Article  CAS  Google Scholar 

  6. A. Munding, A. Kaiser, P. Benkart, E. Kohn, A. Heittmann, H. Hubner, U. Ramacher, Scaling aspects of microjoints for 3D chip interconnects, in 2006 European Solid-State Device Research Conference (2006), pp. 262–265. https://doi.org/10.1109/ESSDER.2006.307688

  7. R. Labie, P. Limaye, K. Lee, C. Berry, E. Beyne, I. De Wolf, Reliability testing of Cu–Sn intermetallic micro-bump interconnections for 3D-device stacking, in 3rd Electronics System Integration Technology Conference ESTC (2010), pp. 1–5. https://doi.org/10.1109/ESTC.2010.5642925

  8. M. Gerber, C. Beddingfield, S. O'Connor, M. Yoo, M. Lee, D. Kang, S. Park, C. Zwenger, R. Darveaux, R. Lanzone, K. Park, Next generation fine pitch Cu pillar technology—enabling next generation silicon nodes, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (2011), pp. 612–618. https://doi.org/10.1109/ECTC.2011.5898576

  9. A. Huffman, M. Lueck, C. Bower, D. Temple, Effects of assembly process parameters on the structure and thermal stability of Sn-capped Cu bump bonds, in 2007 Proceedings 57th Electronic Components and Technology Conference (2007), pp. 1589–1596. https://doi.org/10.1109/ECTC.2007.374007

  10. R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, P. Soussan, Cu/Sn microbumps interconnect for 3D TSV chip stacking, in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), (2010), pp. 858–863. https://doi.org/10.1109/ECTC.2010.5490698

  11. W. Zhang, P. Limaye, Y. Civale, R. Labie, P. Soussan, Fine pitch Cu/Sn solid state diffusion bonding for making high yield bump interconnections and its application in 3D integration, in 3rd Electronics System Integration Technology Conference ESTC (2010), pp. 1–4. https://doi.org/10.1109/ESTC.2010.5643011

  12. Y. Lv, M. Chen, M. Cai, S. Liu, A reliable Cu–Sn stack bonding technology for 3D-TSV packaging. Semicond. Sci. Technol. 29(2), 025003 (2014). https://doi.org/10.1088/0268-1242/29/2/025003

    Article  CAS  Google Scholar 

  13. R.A. Gagliano, M.E. Fine, Thickening kinetics of interfacial Cu6Sn5 and Cu3Sn layers during reaction of liquid tin with solid copper. J. Electron. Mater. 32(12), 1441–1447 (2003). https://doi.org/10.1007/s11664-003-0113-3

    Article  CAS  Google Scholar 

  14. M. Yang, M. Li, C. Wang, Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering. Intermetallics 25, 86–94 (2012). https://doi.org/10.1016/j.intermet.2012.02.023

    Article  CAS  Google Scholar 

  15. O. Liashenko, A.M. Gusak, F. Hodaj, Phase growth competition in solid/liquid reactions between copper or Cu3Sn compound and liquid tin-based solder. J. Mater. Sci.: Mater. Electron. 25(10), 4664–4672 (2014). https://doi.org/10.1007/s10854-014-2221-7

    Article  CAS  Google Scholar 

  16. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K.-J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014). https://doi.org/10.1016/j.mee.2013.12.003

    Article  CAS  Google Scholar 

  17. C. Chen, D. Yu, K.N. Chen, Vertical interconnects of microbumps in 3D integration. MRS Bull. 40, 257–263 (2015). https://doi.org/10.1557/mrs.2015.29

    Article  CAS  Google Scholar 

  18. J. Meyer, I. Panchenko, L. Wambera, S. Bickel, W. Wahrmund, M.J. Wolf, Accelerated SLID bonding for fine-pitch interconnects with porous microstructure, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (2017), pp. 405–410. https://doi.org/10.1109/ECTC.2017.231

  19. D.T. Chu, Y.C. Chu, J.A. Lin, Y.T. Chen, C.C. Wang, Y.F. Song, C.C. Chiang, C. Chen, Growth competition between layer-type and porous-type Cu3Sn in microbumps. Microelectron. Reliab. 79, 32–37 (2017). https://doi.org/10.1016/j.microrel.2017.10.001

    Article  CAS  Google Scholar 

  20. J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011). https://doi.org/10.1016/j.actamat.2010.10.053

    Article  CAS  Google Scholar 

  21. J.S. Kang, R.A. Gagliano, G. Ghosh, M.E. Fine, Isothermal solidification of Cu/Sn diffusion couples to form thin-solder joints. J. Electron. Mater. 31(11), 1238–1243 (2002). https://doi.org/10.1007/s11664-002-0015-9

    Article  CAS  Google Scholar 

  22. C. Flötgen, M. Pawlak, E. Pabo, H.J. van de Wiel, G.R. Hayes, V. Dragoi, Wafer bonding using Cu–Sn intermetallic bonding layers. Microsyst. Technol. 20(4), 653–662 (2014). https://doi.org/10.1007/s00542-013-2002-x

    Article  CAS  Google Scholar 

  23. F. Brem, C. Liu, D. Raik, Influence of Cu joining partner in transient liquid phase bonding, in 2012 4th Electronic System-Integration Technology Conference (2012), pp. 1–5. https://doi.org/10.1109/ESTC.2012.6542135

  24. I. Panchenko, J. Grafe, M. Mueller, K.-J. Wolter, Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffraction, in 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013) (2013), pp. 318–323. https://doi.org/10.1109/EPTC.2013.6745735

  25. T.-T. Luu, A.N.I. Duan, K.E. Aasmundtveit, N. Hoivik, Optimized Cu–Sn wafer-level bonding using intermetallic phase characterization. J. Electron. Mater. 42, 3582–3592 (2013)

    Article  CAS  Google Scholar 

  26. E.M. Barik, C. Gillot, F. Hodaj, Optimization of soldering experiments for power devices interconnection and packaging, in 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC) (2020), pp. 1–7. https://doi.org/10.1109/ESTC48849.2020.9229817

  27. M.S. Park, M.K. Stephenson, C. Shannon, Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions. Acta Mater. 60(13–14), 5125–5134 (2012). https://doi.org/10.1016/j.actamat.2012.06.008

    Article  CAS  Google Scholar 

  28. J. Bertheau, Etude et caractérisation d’interconnexions intermétalliques à partir de plot de cuivre et d’alliage SnAgCu pour l’empilement tridimentionnel de composants actifs, Phd Theisis, Grenoble University, France (2014)

  29. O. Liashenko, Mouillage, germination et croissance lors du brasage en électronique, Phd Theisis, Grenoble University, France (2015)

  30. A.M. Gusak, K.N. Tu, Kinetic theory of flux-driven ripening. Phys. Rev. B 66(11), 115403 (2002). https://doi.org/10.1103/PhysRevB.66.115403

    Article  CAS  Google Scholar 

  31. I. Panchenko, J. Grafe, M. Mueller, K.-J. Wolter, Effects of bonding pressure on quality of SLID interconnects, in 2012 4th Electronic System-Integration Technology Conference (2012), pp. 1–7. https://doi.org/10.1109/ESTC.2012.6542097

  32. J. Bertheau, F. Hodaj, N. Hotellier, J. Charbonnier, Effect of intermetallic compound thickness on shear strength of 25 μm diameter Cu-pillars. Intermetallics 51, 37–47 (2014). https://doi.org/10.1016/j.intermet.2014.02.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiqiri Hodaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, E.M., Gillot, C. & Hodaj, F. Bubble formation and growth during Transient Liquid Phase Bonding in Cu/SnAg system for microelectronic packaging. J Mater Sci: Mater Electron 33, 2360–2374 (2022). https://doi.org/10.1007/s10854-021-07435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07435-8

Navigation