Skip to main content
Log in

Effect of Mg2+ ions substitution on phase formation, structural, morphological, and optical properties of Zn0.1−xMgxO structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present research work, Mg-doped zinc oxide Zn0.1−xMgxO (For x = 0.000, 0.002, 0.006, 0.010) nanoparticles were synthesized by co-precipitation method. The effect of Mg2+ ions substitution on structural, phase transformation, morphological, and optical properties was investigated using X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV–Visible spectroscopy (UV–Vis), respectively. The XRD study shows the formation of pure hexagonal wurtzite phase which was also confirmed using Rietveld refinement performed using Fullprof software. The average crystallite size of Mg-doped zinc oxide nanoparticles calculated using Debye–Scherrer relation found to vary from 43.36 to 36.12 nm with increase in Mg concentration from 0 to 10%. The UV–Vis study reveals the blue shift in optical band gap for all the samples as molar concentration of Mg increases in ZnO lattice which was attributed to quantum confinement effect. Further, results of other studies including XRD viz., Raman, UV–Vis, and FE-SEM show that this method of synthesis can be utilized for increasing the optical band gap of the Zn0.1−xMgxO nanocrystals by retaining the pure ZnO phase up to 10% doping of Mg2+ ions concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Bouchenafa, A. Benmakhlouf, M. Sidoumou, A. Bouhemadou, S. Maabed, M. Halit, Y. Al-Douri, Mater Sci Semicond Process 114, 105085 (2020)

    Article  CAS  Google Scholar 

  2. S. Touam, R. Belghit, R. Mahdjoubi, Y. Megdoud, H. Meradji, M.S. Khan, Y. Al-Douri, Bull. Mater. Sci. 43(1), 1–11 (2020)

    Article  Google Scholar 

  3. A. Belhachemi, H. Abid, Y. Al-Douri, M. Sehil, A. Bouhemadou, M. Ameri, Chin. J. Phys. 55(3), 1018–1031 (2017)

    Article  CAS  Google Scholar 

  4. I. Bziz, E.H. Atmani, N. Fazouan, M. Aazi, Surf. Interfaces 24, 101126 (2021)

    Article  CAS  Google Scholar 

  5. S. Benalia, M. Merabet, D. Rached, Y. Al-Douri, B. Abidri, R. Khenata, M. Labair, Mater Sci Semicond Process 31, 493–500 (2015)

    Article  CAS  Google Scholar 

  6. M. Ameri, F. Mired, I. Ameri, Y. Al-Douri, Mater. Express 4(6), 521–532 (2014)

    Article  CAS  Google Scholar 

  7. R.M. Hewlett, M.A. McLachlan, Adv. Mater. 28, 3893–3921 (2016)

    Article  CAS  Google Scholar 

  8. A.K. Zak, W.A. Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Adv Powder Technol. 24, 618–624 (2013)

    Article  Google Scholar 

  9. S. Singh, P. Thiyagarajan, K.M. Kant, D. Anita, S. Thirupathiah, N. Rama, M.R. Rao, J. Phys. D: Appl. Phys. 40, 6312 (2007)

    Article  CAS  Google Scholar 

  10. O. Mangla, S. Roy, Solid State Phenom. 287, 75–79 (2019)

    Article  Google Scholar 

  11. B.G. Shohany, L. Motevalizadeh, M.E.J. Abrishami, Theor. Appl. Phys. 12, 219–225 (2018)

    Google Scholar 

  12. R. Zha, R. Nadimicherla, X.J. Guo, Mater. Chem. A 3(12), 6565–6574 (2015)

    Article  CAS  Google Scholar 

  13. X.Y. Yan, C.B. Yao, J. Li, J.Y. Hu, Q.H. Li, S.B. Yang, Opt. Mater. 55, 73–77 (2016)

    Article  CAS  Google Scholar 

  14. R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, A.R. Daud, J. Alloys Compd. 521, 71–76 (2012)

    Article  CAS  Google Scholar 

  15. Y. Zhao, M. Zhou, Z. Li, Z. Lv, X. Liang, J. Min, W. Shi, J. Lumin. 131, 1900–1903 (2011)

    Article  CAS  Google Scholar 

  16. Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin, M. Siadat, Opt. Quant. Electron. 46(1), 229–234 (2014)

    Article  CAS  Google Scholar 

  17. S. Ayaz, P. Mishra, S. Sen, J. Appl. Phys. 126(2), 024302 (2019)

    Article  Google Scholar 

  18. G. Zheng, P. Zhu, L. Sun, J. Jiang, J. Liu, X. Wang, W. Li, AIP Adv. 6(12), 125306 (2016)

    Article  Google Scholar 

  19. N. Fathima, N. Pradeep, J. Balakrishnan, Sol. Energy Mater Sol. Cells 194, 207–214 (2019)

    Article  CAS  Google Scholar 

  20. C.F. Klingshirn, Semiconductor Optics (Springer Science & Business Media, New York, 2012)

    Book  Google Scholar 

  21. M. Ghaffari, F. Moztarzadeh, M. Safavi, Ceram. Int. 45(1), 1179–1188 (2019)

    Article  CAS  Google Scholar 

  22. A. Saaedi, R. Yousefi, F.A. Sheini, M. Cheraghizade, A.K. Zak, N.M. Huang, Ceram. Int. 40, 4327 (2014)

    Article  CAS  Google Scholar 

  23. A.S. Hameed, C. Karthikeyan, S. Sasikumar, V.S. Kumar, S. Kumaresan, R.J. Ganesan, Mater. Chem. B 1, 5950–5962 (2013)

    Article  Google Scholar 

  24. M.S. Rad, A. Kompany, A.K. Zak, M.E. Abrishami, Mod. Phys. Lett. B 29, 1450251 (2015)

    Article  Google Scholar 

  25. R. Yousefi, A.K. Zak, M.R. Mahmoudian, J. Solid State Chem. 184, 2678 (2011)

    Article  CAS  Google Scholar 

  26. A.B. Lavand, Y.S. Malghe, Int. J. Photochem. 2015, 1–9 (2015)

    Article  Google Scholar 

  27. N. Badi, Y. Al-Douri, S. Khasim, Opt. Mater. 89, 554–558 (2019)

    Article  CAS  Google Scholar 

  28. F. Bigdeli, A. Morsali, Mater. Lett. 64, 4–5 (2010)

    Article  CAS  Google Scholar 

  29. S. Vyas, M. Johnson, Technol. Rev. 64, 2 (2020)

    Google Scholar 

  30. W.B. Russel, W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  31. M. Saeidi, M. Abrari, M. Ahmadi, Appl. Phys. A 125, 1–9 (2019)

    Article  CAS  Google Scholar 

  32. C.L. Kuo, C.L. Wang, H.H. Ko, W.S. Hwang, K.M. Chang, W.L. Li, M.C. Wang, Ceram. Int. 36, 693 (2010)

    Article  CAS  Google Scholar 

  33. H.R. Ghorbani, F.P. Mehr, H. Pazoki, B.M. Rahmani, Orient. J. Chem. 31(2), 1219–1221 (2015)

    Article  CAS  Google Scholar 

  34. S. Sarkar, E. Guibal, F. Quignard, A.K. SenGupta, J. Nanopart. Res. 14(2), 1–24 (2012)

    Article  Google Scholar 

  35. D.B. Bharti, A.V. Bharati, Luminious 32(3), 317–320 (2017)

    CAS  Google Scholar 

  36. M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, B.J. Hungund, Mater. Sci. Technol. 34(6), 1035–1043 (2018)

    Article  CAS  Google Scholar 

  37. R. Razali, A.K. Zak, W.A. Majid, M. Darroudi, Ceram. Int. 37, 3657 (2011)

    Article  CAS  Google Scholar 

  38. K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, V.J. Chabukswar, Macromol. Sci. A 51(12), 941–947 (2014)

    Article  CAS  Google Scholar 

  39. S.D. Lee, S.H. Nam, M.H. Kim, J.H. Boo, Phys. Procedia 32, 320 (2012)

    Article  CAS  Google Scholar 

  40. Y. Al-Douri, Colloidal Metal Oxide Nanoparticles (Elsevier, Amsterdam, 2020), pp. 25–38

    Book  Google Scholar 

  41. T.D. Nguyen, Q.D. Nguyen, T.T. Nguyen, Adv. Nat. Sci. 5, 035011 (2014)

    CAS  Google Scholar 

  42. R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak, G.P.J. Drummen, Alloys Compd. 516, 41 (2012)

    Article  CAS  Google Scholar 

  43. T.P. Yadav, R.M. Yadav, D.P. Singh, Nanosci. Nanotechnol. 2, 22 (2012)

    Article  Google Scholar 

  44. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  45. S. Ahmed, S.A. Chaudhry, S.J. Ikram, Photochem. Photobiol. 166, 272–284 (2017)

    Article  CAS  Google Scholar 

  46. V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 8396 (2009)

    Article  Google Scholar 

  47. A.K. Zak, M.E. Abrishami, W.A. Majid, R. Yousefi, S.M. Hosseini, Ceram. Int. 37, 393–398 (2011)

    Article  CAS  Google Scholar 

  48. A. Samanta, M.N. Goswami, P.K. Mahapatra, Mater. Sci. Eng. B 245, 1–8 (2019)

    Article  CAS  Google Scholar 

  49. Y. Xiao, L. Li, Y. Li, M. Fang, L. Zhang, Nanotechnology 16, 671 (2005)

    Article  CAS  Google Scholar 

  50. R. Sagheer, M. Khalil, V. Abbas, Z.N. Kayani, U. Tariq, F. Ashraf, Optik 200, 163428 (2020)

    Article  CAS  Google Scholar 

  51. S. Fabbiyola, L.J. Kennedy, A.A. Dakhel, M. Bououdina, J.J. Vijaya, T. Ratnaji, J. Mol. Struct. 1109, 89–96 (2016)

    Article  CAS  Google Scholar 

  52. H. Jeon, Y.J. Min, S.H. Ahn, S.M. Hong, J.S. Shin, J.H. Kim, K.B. Lee, Colloids Surf. A. Physicochem. Eng. Asp. 414, 75 (2012)

    Article  CAS  Google Scholar 

  53. A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Mater. Sci. Mater. Electron. 27, 12271 (2016)

    Article  CAS  Google Scholar 

  54. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, New York, 1956)

    Google Scholar 

  55. J. Iqbal, T. Jan, M. Ismail, N. Ahmad, A. Arif, M. Khan, A. Arshad, Ceram. Int. 40, 7487–7493 (2014)

    Article  CAS  Google Scholar 

  56. M.N.H. Mia, M.F. Pervez, M.K. Hossain, M.R. Rahman, M.J. Uddin, M.A. Al Mashud, M. Hoq, Results Phys. 7, 2683–2691 (2017)

    Article  Google Scholar 

  57. V. Etacheri, R. Roshan, V. Kumar, Appl. Mater. Interfaces 4(5), 2717–2725 (2012)

    Article  CAS  Google Scholar 

  58. A.F. Jaramillo, R. Baez-Cruz, L.F. Montoya, C. Medinam, E. Pérez-Tijerina, F. Salazar, M.F. Melendrez, Ceram. Int. 43(15), 11838–11847 (2017)

    Article  CAS  Google Scholar 

  59. A. Sahoo, M. Miryala, T. Dixit, A. Klimkowicz, B. Francis, M. Murakami, S. Krishnan, Nanomaterials 10(7), 1326 (2020)

    Article  CAS  Google Scholar 

  60. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, J. Appl. Phys. 115, 073508 (2014)

    Article  Google Scholar 

  61. Z.Y. Jiang, K.R. Zhu, Z.Q. Lin, S.W. Jin, G. Li, Rare Met. 37, 881–885 (2018)

    Article  CAS  Google Scholar 

  62. P. Kumar, J.P. Singh, Y. Kumar, A. Gaur, H.K. Malik, K. Asokan, Curr. App. Phys. 12, 1166–1172 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Azad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, S., Kumar, N. & Chand, S. Effect of Mg2+ ions substitution on phase formation, structural, morphological, and optical properties of Zn0.1−xMgxO structure. J Mater Sci: Mater Electron 33, 861–870 (2022). https://doi.org/10.1007/s10854-021-07356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07356-6

Navigation