Skip to main content
Log in

Structural and optical properties of Iodine doped zinc oxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Iodine- doped zinc oxide (viz., ZnO1-xIx) nanoparticles were prepared using the sol–gel method. The samples were treated at 700 °C in air for 1h. The structural, morphological and optical properties were measured using an X-ray diffractometer (XRD), a field emission scanning electron microscope (FE-SEM), UV–visible spectroscopy (UV/vis) and Raman spectroscopy, respectively. XRD results showed that the pure and doped samples have a wurtzite hexagonal structure, indicating the presence of some impurities in doped samples. The lattice parameters a and c were observed to be closer to the reported values for pure ZnO. The average crystalline size values of samples were calculated and found to be between 84 ± 18 and 177 ± 53 nm. The FE-SEM micrographs reveal that the particle sizes decreased from 77 to 57 nm with an increasing I concentration from x = 0.0 to x = 0.4, respectively. The morphologies of the samples were changed from particle to flask shape at higher I concentrations of 0.6 and 0.8 with average diameters of 213 and 427 nm. The increasing I concentration from 0.0 to 0.8 narrows the optical energy gap (Eg) from 3.271 to 3.242 eV due to the presence of oxygen vacancies or the lattice expansion caused by doping. Raman spectra of samples consist of the E2(high) mode, which confirmed the wurtzite hexagonal structure and it is located between 435 and 436 cm−1 except for x = 0.6, where the E2(high) mode was shifted to the higher wavenumber could be due to defects or anisotropic internal strains consistent to different growth directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.E. Abrishami, S.M. Hosseini, E.A. Kakhki, A. Kompany, M. Ghasemifard, Int. J. Nanosci. 09, 19 (2010). https://doi.org/10.1142/S0219581X1000648X

    Article  CAS  Google Scholar 

  2. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals: Materials and Device Technology (John Wiley & Sons, 2008).

    Google Scholar 

  3. S.D. Lee, S.-H. Nam, M.-H. Kim, J.-H. Boo, Phys. Procedia 32, 320 (2012). https://doi.org/10.1016/j.phpro.2012.03.563

    Article  CAS  Google Scholar 

  4. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 41301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  5. Y.N. Hendri, M.A. Kenichi Purbayanto, S.N. Pratama, N. Zuhairah, Y. Darma, J. Phys. Conf. Ser. 1772, 12013 (2021). https://doi.org/10.1088/1742-6596/1772/1/012013

    Article  CAS  Google Scholar 

  6. Z.N. Kayani, F. Saleemi, I. Batool, Mater. Today Proc. 2, 5619 (2015). https://doi.org/10.1016/j.matpr.2015.11.100

    Article  Google Scholar 

  7. J. Kubota, K. Haga, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y. Segawa, Appl. Surf. Sci. 216, 431 (2003). https://doi.org/10.1016/S0169-4332(03)00388-X

    Article  CAS  Google Scholar 

  8. Y.-S. Fu, X.-W. Du, J. Sun, Y.-F. Song, J. Liu, J. Phys. Chem. C 111, 3863 (2007). https://doi.org/10.1021/jp068461f

    Article  CAS  Google Scholar 

  9. N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Results Phys 6, 217 (2016). https://doi.org/10.1016/j.rinp.2016.04.001

    Article  Google Scholar 

  10. M.L. Dinesha, H.S. Jayanna, S. Mohanty, S. Ravi, J. Alloy. Compd. 490, 618 (2010). https://doi.org/10.1016/j.jallcom.2009.10.120

    Article  CAS  Google Scholar 

  11. A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, RSC Adv. 10, 42838 (2020). https://doi.org/10.1039/D0RA07689A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E.-B. Kim, M. Imran, E.-H. Lee, M.S. Akhtar, S. Ameen, Chemosphere 286, 131695 (2022). https://doi.org/10.1016/j.chemosphere.2021.131695

    Article  CAS  PubMed  Google Scholar 

  13. K. N. E. Mamucud, K. A. Salazar, and M. J. F. Empizo, in: Proceedings of the Samahang Pisika Ng Pilipinas (2019), pp. 1–4 https://doi.org/https://proceedings.spp-online.org/article/view/SPP-2019-PA-10

  14. Y. Zhang, M. Fu, J. Wang, D. He, and Y. Wang, Opt. Mater 34, 1758 (2012). https://doi.org/10.1016/j.optmat.2012.04.014.

  15. E.B. Magnusson, B.H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M.J. Peterer, A. Ardavan, P.J. Leek, Appl. Phys. Lett. 106, 63509 (2015). https://doi.org/10.1063/1.4908248

    Article  CAS  Google Scholar 

  16. V. Consonni, A.M. Lord, Nano Energy 83, 105789 (2021). https://doi.org/10.1016/j.nanoen.2021.105789

    Article  CAS  Google Scholar 

  17. Z. Hu, G. Oskam, P.C. Searson, J. Colloid Interface Sci. 263, 454 (2003). https://doi.org/10.1016/S0021-9797(03)00205-4

    Article  CAS  PubMed  Google Scholar 

  18. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, J. Appl. Phys. 102, 93515 (2007). https://doi.org/10.1063/1.2804012

    Article  CAS  Google Scholar 

  19. M. Krasovska, V. Gerbreders, I. Mihailova, A. Ogurcovs, E. Sledevskis, A. Gerbreders, P. Sarajevs, Beilstein. J. Nanotechnol. 9, 2421 (2018). https://doi.org/10.3762/bjnano.9.227

    Article  CAS  Google Scholar 

  20. K. Omri, I. Najeh, R. Dhahri, J. El-Ghoul, L. El Mir, Microelectron. Eng. 128, 53 (2014). https://doi.org/10.1016/j.mee.2014.05.029

    Article  CAS  Google Scholar 

  21. D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003). https://doi.org/10.1021/ja036811v

    Article  CAS  PubMed  Google Scholar 

  22. Y.J. Hong, J.S. Kum, I.-B. Shim, C.S. Kim, IEEE Trans. Magn. 40, 2808 (2004). https://doi.org/10.1109/TMAG.2004.832105

    Article  CAS  Google Scholar 

  23. Z. Tao, X. Yu, X. Fei, J. Liu, Y. Zhao, H. Wu, G. Yang, S. Yang, L. Yang, Mater. Lett. 62, 3018 (2008). https://doi.org/10.1016/j.matlet.2008.01.098

    Article  CAS  Google Scholar 

  24. A. Alexandrov, M. Zvaigzne, D. Lypenko, I. Nabiev, P. Samokhvalov, Sci. Rep. 10, 7496 (2020). https://doi.org/10.1038/s41598-020-64263-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Q. Humayun, M. Kashif, U. Hashim, J. Nanomater. 2013, 792930 (2013). https://doi.org/10.1155/2013/792930

    Article  CAS  Google Scholar 

  26. A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.S. Aanand, J. Alloy. Compd. 723, 1155 (2017). https://doi.org/10.1016/j.jallcom.2017.06.336

    Article  CAS  Google Scholar 

  27. V. Etacheri, R. Roshan, V. Kumar, A.C.S. Appl, Mater. Interfaces 4, 2717 (2012). https://doi.org/10.1021/am300359h

    Article  CAS  Google Scholar 

  28. A.K. Mishra, D. Das, Mater. Sci. Eng. B 171, 5 (2010). https://doi.org/10.1016/j.mseb.2010.03.045

    Article  CAS  Google Scholar 

  29. S.A. Khayyat, M. Abaker, A. Umar, M.O. Alkattan, N.D. Alharbi, S. Baskoutas, J. Nanosci. Nanotechnol. 12, 8453 (2012). https://doi.org/10.1166/jnn.2012.6801

    Article  CAS  PubMed  Google Scholar 

  30. A. Rahmati, A. Balouch Sirgani, M. Molaei, M. Karimipour, Eur. Phys. J Plus 129, 250 (2014). https://doi.org/10.1140/epjp/i2014-14250-8

    Article  CAS  Google Scholar 

  31. M. Poloju, N. Jayababu, M.V. Ramana Reddy, Mater. Sci. Eng. B 227, 61 (2018). https://doi.org/10.1016/j.mseb.2017.10.012

    Article  CAS  Google Scholar 

  32. H.B. Dias, M.I.B. Bernardi, V.S. Marangoni, A.C. de Abreu Bernardi, A.N. de Souza Rastelli, A.C. Hernandes, Mater. Sci. Eng. C 96, 391 (2019). https://doi.org/10.1016/j.msec.2018.10.063

    Article  CAS  Google Scholar 

  33. J. El Ghoul, M. Kraini, L. El Mir, J. Mater. Sci. Mater. Electron. 26, 2555 (2015). https://doi.org/10.1007/s10854-015-2722-z

    Article  CAS  Google Scholar 

  34. A.K. Worku, D.W. Ayele, N.G. Habtu, G.A. Melas, T.A. Yemata, N.Y. Mekonnen, M.A. Teshager, SN Appl. Sci 3, 699 (2021). https://doi.org/10.1007/s42452-021-04682-6

    Article  CAS  Google Scholar 

  35. J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysiou, S.C. Pillai, J. Hazard. Mater. 324, 39 (2017). https://doi.org/10.1016/j.jhazmat.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  36. R. Yousefi, F. Jamali-Sheini, Ceram. Int. 38, 5821 (2012). https://doi.org/10.1016/j.ceramint.2012.04.030

    Article  CAS  Google Scholar 

  37. S. Rafique, A.K. Kasi, A. Aminullah, J.K. Kasi, M. Bokhari, Z. Shakoor, Curr. Appl. Phys. 21, 72 (2021). https://doi.org/10.1016/j.cap.2020.10.004

    Article  Google Scholar 

  38. L. Bouaziz, M. Dubus, K. Si-Ahmed, H. Kerdjoudj, M. Özacar, Y. Bessekhouad, J. Mol. Struct. 1255, 132391 (2022). https://doi.org/10.1016/j.molstruc.2022.132391

    Article  CAS  Google Scholar 

  39. G.P. Papari, B. Silvestri, G. Vitiello, L. De Stefano, I. Rea, G. Luciani, A. Aronne, A. Andreone, J. Phys. Chem. C 121, 16012 (2017). https://doi.org/10.1021/acs.jpcc.7b04821

    Article  CAS  Google Scholar 

  40. Y.L. Zhang, Y. Yang, J.H. Zhao, R.Q. Tan, P. Cui, W.J. Song, J. Sol-Gel, Sci. Technol 51, 198 (2009). https://doi.org/10.1007/s10971-009-1959-5

    Article  CAS  Google Scholar 

  41. S. Sakka, R.M. Almeida, Handbook of Sol-Gel Science and Technology—2: Characterization and Properties of Sol-Gel Materials and Products (Springer, 2004)

    Google Scholar 

  42. J. laugier and B. Bochu, ENSP/Laboratoire Des Matériaux Du Génie Phys. BP 46. 38042 Saint Martin d’Hères, Fr (n.d.). http://www.inpg.fr/LMGP; http://www.ccp14

  43. H. Rollinson and J. Adetunji, in: Encyclopedia of Engineering Geology (Springer, New York, 2017), pp. 1–6. https://doi.org/10.1007/978-3-319-39193-9_340-1

  44. R.D.T. Shannon, C.T. Prewitt, Acta Cryst B 25, 925 (1969)

    Article  CAS  Google Scholar 

  45. A. Cai, L. Du, Q. Wang, Y. Chang, X. Wang, X. Guo, Mater. Sci. Semicond. Process. 43, 25 (2016). https://doi.org/10.1016/j.mssp.2015.11.017

    Article  CAS  Google Scholar 

  46. M. Ghosh, D. Karmakar, S. Basu, S.N. Jha, D. Bhattacharyya, S.C. Gadkari, S.K. Gupta, J. Phys. Chem. Solids 75, 543 (2014). https://doi.org/10.1016/j.jpcs.2013.11.007

    Article  CAS  Google Scholar 

  47. E.A. AraújoJúnior, F.X. Nobre, G.S. da Sousa, L.S. Cavalcante, M.R. de Morais Chaves Santos, F.L. Souza, J.M.E. de Matos, RSC Adv. 7, 24263 (2017). https://doi.org/10.1039/C7RA03277C

    Article  Google Scholar 

  48. R. Herrera-Rivera, M. Olvera, A. Maldonado, J. Nanomater. 2017, 1–9 (2017). https://doi.org/10.1155/2017/4595384

    Article  Google Scholar 

  49. R. Noonuruk, W. Mekprasart, T. Supparattanasamai, T. Kanyapan, W. Techitdheera, W. Pecharapa, Integr. Ferroelectr. 156, 58 (2014). https://doi.org/10.1080/10584587.2014.906281

    Article  CAS  Google Scholar 

  50. N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani, A.R. Balu, Mater. Sci. Pol. 33, 774 (2015). https://doi.org/10.1515/msp-2015-0115

    Article  CAS  Google Scholar 

  51. L. Bouaziz, S. Boulahlib, M. Özacar, K. Si-Ahmed, Y. Bessekhouad, Mater. Today Commun 31, 103450 (2022). https://doi.org/10.1016/j.mtcomm.2022.103450

    Article  CAS  Google Scholar 

  52. A.N. Mallika, A. Ramachandra Reddy, K. Sowri Babu, C. Sujatha, K. Venugopal Reddy, Opt. Mater. 36, 879 (2014). https://doi.org/10.1016/j.optmat.2013.12.015

    Article  CAS  Google Scholar 

  53. N. Bouaslaa, S. Abderrahmanea, S. Athmania, A. Oulabbasa, M. Bououdinab, Desalin. Water Treat. 104, 217 (2018). https://doi.org/10.5004/dwt.2018.21928

    Article  Google Scholar 

  54. C.S. Barrett, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd edn. (Pergamon, New York, 1980)

    Google Scholar 

  55. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Superlattices Microstruct. 85, 7 (2015). https://doi.org/10.1016/j.spmi.2015.05.007

    Article  CAS  Google Scholar 

  56. R.K. Yadav, P. Chauhan, Indian. J. Pure. Appl. Phys.  57, 881 (2019). http://nopr.niscpr.res.in/handle/123456789/52775

    Google Scholar 

  57. M. Meddouri, L. Hammiche, O. Slimi, D. Djouadi, A. Chelouche, Mater. Sci. Pol. 34, 659 (2016). https://doi.org/10.1515/msp-2016-0082 

    Article  CAS  Google Scholar 

  58. B. Sukluan, P. Nakarungsee, G.S. Chen, W. Samanjit, V. Krongtong, I.M. Tang, S. Thongmee, Adv. Sci. Eng. Med 7, 216 (2015). https://doi.org/10.1166/asem.2015.1678

    Article  CAS  Google Scholar 

  59. T. Entradas, J.F. Cabrita, S. Dalui, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Mater. Chem. Phys. 147, 563 (2014). https://doi.org/10.1016/j.matchemphys.2014.05.032

    Article  CAS  Google Scholar 

  60. F. Barka-Bouaifel, B. Sieber, N. Bezzi, J. Benner, P. Roussel, L. Boussekey, S. Szunerits, R. Boukherroub, J. Mater. Chem. 21, 10982 (2011). https://doi.org/10.1039/C1JM11351H

    Article  CAS  Google Scholar 

  61. B.K. Das, S.J. Bora, M. Chakrabortty, L. Kalita, R. Chakrabarty, R. Barman, J. Chem. Sci. 118, 487 (2006). https://doi.org/10.1007/BF02703945

    Article  CAS  Google Scholar 

  62. S.B. Rana, A. Singh, N. Kaur, J. Mater. Sc Mater. Electron 24, 44 (2013). https://doi.org/10.1007/s10854-012-0795-5

    Article  CAS  Google Scholar 

  63. A. Samavati, A.F. Ismail, H. Nur, Z. Othaman, M.K. Mustafa, Chin. Phys. B 25, 77803 (2016). https://doi.org/10.1088/1674-1056/25/7/077803

    Article  Google Scholar 

  64. C. Belkhaoui, N. Mzabi, H. Smaoui, Mater. Res. Bull. 111, 70 (2019). https://doi.org/10.1016/j.materresbull.2018.11.006

    Article  CAS  Google Scholar 

  65. M. Kraini, F. W. Aldbea, N. Bouguila, and C. Vázquez-Vázquez, JOPAS 17 (2018).

  66. K. Bazaka, M.V. Jacob, Mater. Sci. Forum 654–656, 1764 (2010). https://doi.org/10.4028/www.scientific.net/MSF.654-656.1764

    Article  CAS  Google Scholar 

  67. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 29, 3097 (2013). https://doi.org/10.1021/la4001768

    Article  CAS  PubMed  Google Scholar 

  68. H. Liu, M. Teng, X. Wei, T. Li, Z. Jiang, Q. Niu, X. Wang, Int. J. Miner. Metall. Mater 28, 495 (2021). https://doi.org/10.1007/s12613-020-2033-0

    Article  CAS  Google Scholar 

  69. G. Sanon, R. Rup, A. Mansingh, Phys. Rev. B 44, 5672 (1991). https://doi.org/10.1103/PhysRevB.44.5672

    Article  CAS  Google Scholar 

  70. S.U. Awan, S.K. Hasanain, G. Hassnain Jaffari, D.H. Anjum, U.S. Qurashi, J. Appl. Phys. 116, 83510 (2014). https://doi.org/10.1063/1.4894153

    Article  CAS  Google Scholar 

  71. L.F. Jiang, W.Z. Shen, H. Ogawa, Q.X. Guo, J. Appl. Phys. 94, 5704 (2003). https://doi.org/10.1063/1.1616988

    Article  CAS  Google Scholar 

  72. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, J. Clust. Sci. 30, 351 (2019). https://doi.org/10.1007/s10876-018-01493-5

    Article  CAS  Google Scholar 

  73. A. Jain, P. Sagar, R.M. Mehra, Solid State Electron. 50, 1420 (2006). https://doi.org/10.1016/j.sse.2006.07.001

    Article  CAS  Google Scholar 

  74. G. Hu, H. Gong, E.F. Chor, P. Wu, Appl. Phys. Lett. 89, 251102 (2006). https://doi.org/10.1063/1.2408652

    Article  CAS  Google Scholar 

  75. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, V.P.S. Awana, J. Mater. Sci. Mater. Electron. 24, 5102 (2013). https://doi.org/10.1007/s10854-013-1530-6

    Article  CAS  Google Scholar 

  76. G.J. Exarhos, S.K. Sharma, Thin Solid Films 270, 27 (1995). https://doi.org/10.1016/0040-6090(95)06855-4

    Article  CAS  Google Scholar 

  77. A.J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 81, 53 (2011). https://doi.org/10.1016/j.saa.2011.05.043

    Article  CAS  Google Scholar 

  78. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2424538

    Article  Google Scholar 

  79. K.-J. Chen, T.-H. Fang, F.-Y. Hung, L.-W. Ji, S.-J. Chang, S.-J. Young, Y.J. Hsiao, Appl. Surf. Sci. 254, 5791 (2008). https://doi.org/10.1016/j.apsusc.2008.03.080

    Article  CAS  Google Scholar 

  80. K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, J. Appl. Phys. (2005). https://doi.org/10.1063/1.1944222

    Article  Google Scholar 

  81. A. Khan, J Pak Mater Soc 4, 5 (2010)

    Google Scholar 

  82. H. Fukushima, T. Kozu, H. Shima, H. Funakubo, H. Uchida, T. Katoda, and K. Nishida, in: 2015 Jt. IEEE International Symposium on Applications of Ferroelectrics (ISAF), International Symposium on Integrated Functions (ISIF), Piezoelectric Force Microscope Working (IEEE, 2015), pp. 28–31.

  83. A. Hassan, A.A. Khan, Y.H. Ahn, M. Azam, M. Zubair, W. Xue, Y. Cao, Nanomaterials 12, 2192 (2022). https://doi.org/10.3390/nano12132192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. A. Kaphle, M.F. Borunda, P. Hari, Mater. Sci. Semicond. Process. 84, 131 (2018). https://doi.org/10.1016/j.mssp.2018.05.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by HP-NANOBIO Project PID2019-111163RB-I00, granted by Spanish Ministry of Science. CVV belongs to the Galician Competitive Research Group ED431C-2021/16, co-funded by FEDER. The authors would like to thank the use of RIAIDT-USC analytical facilities (University of Santiago de Compostela, Spain) and Gabes University (Tunisia) for analytical assistance.

Funding

Partial financial support was received from HP-NANOBIO Project PID2019-111163RB-I00, granted by Spanish Ministry of Science. CVV belongs to the Galician Competitive Research Group ED431C-2021/16, co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [FWA], [CVV] and [UAO]. The first draft of the manuscript was written by [FWA] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ftema W. Aldbea.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldbea, F.W., Vázquez Vázquez, C., Othman, U.A. et al. Structural and optical properties of Iodine doped zinc oxide nanoparticles. J Mater Sci: Mater Electron 35, 459 (2024). https://doi.org/10.1007/s10854-024-12170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12170-x

Navigation