Skip to main content

Advertisement

Log in

Analysis of giant dielectric permittivity and electrical properties for energy storage devices through impedance spectroscopy in CaCu3Ti4O12

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Calcium copper titanate (CCTO) ceramic is prepared by conventional solid-state reaction (SSR) technique. Sintering of manufactured CCTO ceramic is completed at 1050 °C for 4 h. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) are used to know the crystallinity and microstructural properties of CCTO ceramic. The space group (Im3) of CCTO crystal structure is confirmed by XRD analysis. FE-SEM image discloses that the grains have distinguishable grain boundaries. Grains are highly compact and porosity is very low. The dielectric properties and electrical properties are investigated in the temperature and frequency range of (30–130 °C) and (100 Hz–1 MHz), respectively. At 100 Hz and 30 °C, CCTO exhibits a giant dielectric constant ~ 7685. Impedance analysis confirms the relaxation, depends on temperature in CCTO ceramic. Existence of relaxation named non-Debye in CCTO ceramic is confirmed by Modulus study. Activation energy calculated by linear fitting of dc-conductivity is 0.14 eV. This material is a suitable candidate for capacitor application due to giant dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, L. Sun, Dielectric properties of Y and Nb co-doped TiO2 ceramics. Sci. Rep. 7, 1–7 (2017)

    Article  Google Scholar 

  2. S. Ke, T. Li, M. Ye, P. Lin, W. Yuan, X. Zeng, L. Chen, H. Huang, Origin of colossal dielectric response in (In + Nb) co-doped TiO2 rutile ceramics: a potential electrothermal material. Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  3. X.J. Luo, Y.T. Zhang, D.H. Xu, S.S. Chen, Y. Wang, Y. Chai, Y.S. Liu, S.L. Tang, C.P. Yang, K. Bärner, Origin of the temperature stability of dielectric constant in CaCu3Ti4O12. Ceram. Int. 45, 12994–13003 (2019)

    Article  CAS  Google Scholar 

  4. J.Y. Li, T.W. Xu, S.T. Li, H.Y. Jin, W. Li, Structure and electrical response of CaCu3Ti4O12 ceramics: effect of heat treatments at the high vacuum. J. Alloys Compd. 506, L1–L4 (2010)

    Article  CAS  Google Scholar 

  5. W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15–23 (2017)

    Article  CAS  Google Scholar 

  6. W. Tuichai, S. Danwittayakul, P. Srepusharawoot, P. Thongbai, S. Maensiri, Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A= Al, Ga and In). Ceram. Int. 43, S265–S269 (2017)

    Article  CAS  Google Scholar 

  7. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60, 15–62 (2014)

    Article  CAS  Google Scholar 

  8. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5) TiO3–NaNbO3 ceramics. Mater. Sci. Eng. B 112, 5–9 (2004)

    Article  Google Scholar 

  9. A. Yadav, S.P. Mantry, M. Fahad, P.M. Sarun, Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy. Physica B Condens. Matter. 537, 290–295 (2018)

    Article  CAS  Google Scholar 

  10. Z. Liu, J. Lu, Y. Mao, P. Ren, H. Fan, Energy storage properties of NaNbO3–CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J. Eur. Ceram. Soc. 38, 4939–4945 (2018)

    Article  CAS  Google Scholar 

  11. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  12. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper-titanate. Solid State Commun. 15, 217–220 (2000)

    Article  Google Scholar 

  13. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(2002), 2153–2155 (2002)

    Article  CAS  Google Scholar 

  14. F. Amaral, L.C. Costa, M.A. Valente, A.J.S. Fernandes, N. Franco, E. Alves, F.M. Costa, Colossal dielectric constant of poly-and single-crystalline CaCu3Ti4O12 fibres grown by the laser floating zone technique. Acta Mater. 59, 102–111 (2011)

    Article  CAS  Google Scholar 

  15. L. Fang, M. Shen, W. Cao, Effects of post-anneal conditions on the dielectric properties of CaCu3Ti4O12 thin films prepared on Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 95, 6483–6485 (2004)

    Article  CAS  Google Scholar 

  16. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  CAS  Google Scholar 

  17. M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, Comment on the origin (s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem. 19, 5916–5919 (2009)

    Article  CAS  Google Scholar 

  18. W.X. Yuan, Impedance and electric modulus approaches to investigate four origins of giant dielectric constant in CaCu3Ti4O12 ceramics. Solid State Sci. 14, 330–334 (2012)

    Article  CAS  Google Scholar 

  19. R. Yu, H. Xue, Z. Cao, L. Chen, Z. Xiong, Effect of oxygen sintering atmosphere on the electrical behavior of CCTO ceramics. J. Eur. Ceram. Soc. 32, 1245–1249 (2012)

    Article  CAS  Google Scholar 

  20. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12ceramics. Phys. Rev. B 73, 094124 (2006)

    Article  Google Scholar 

  21. F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y-doped calcium copper titanate. J. Am. Ceram. 93, 3043–3045 (2010)

    Article  CAS  Google Scholar 

  22. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Lett. 8, 291–311 (2016)

    Article  Google Scholar 

  23. Y. Wang, D. Wang, J. Xu, L. Zhong, J. Gao, A. Xiao, M. Wu, Z. He, R. Yao, S. Li, X. Ren, Trirelaxor ferroelectric material with giant dielectric permittivity over a wide temperature range ACS Appl. Mater. Interfaces 13, 33272–33281 (2021)

    Article  CAS  Google Scholar 

  24. C. Zhao, J. Wu, Effects of secondary phases on the high-performance colossal permittivity in titanium dioxide ceramics. ACS Appl. Mater. Interfaces 10, 3680–3688 (2018)

    Article  CAS  Google Scholar 

  25. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013)

    Article  Google Scholar 

  26. L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, H. Peng, Influence of Zirconium doping on microstructure and dielectric properties of CaCu3Ti4O12 synthesized by the sol–gel method. J. Alloys Compd. 651, 283–289 (2015)

    Article  CAS  Google Scholar 

  27. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart Res. 22, 1–10 (2020)

    Article  Google Scholar 

  28. M. Sahu, S. Hajra, R.N.P. Choudhary, Synthesis and anomalous behavior of electrical properties of Ba modified CaCu3Ti4O12. J. Chin. Adv. Mater. Soc. 6, 382–396 (2018)

    Article  CAS  Google Scholar 

  29. T. Mondal, B.P. Majee, S. Das, T.P. Sinha, T.R. Middya, T. Badapanda, P.M. Sarun, A comparative study on electrical conduction properties of Sr-substituted Ba1−xSrxZr0.1Ti0.9O3 (x = 0.00-0.15). Ionics 23, 2405–2416 (2017)

    Article  CAS  Google Scholar 

  30. J.W. Lee, J.H. Koh, Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications. Ceram. Int. 41, 10442–10447 (2015)

    Article  CAS  Google Scholar 

  31. A. Yadav, M. Kumari, P.M. Sarun, Influence of vanadium substitution on dielectric and electrical characteristics of NaNbO3 ceramics in polymorphic R and S phase. Mater. Chem. Phys. 264, 124424 (2021)

    Article  CAS  Google Scholar 

  32. A. Sakthisabarimoorthi, S.M.B. Dhas, R. Robert, M. Jose, Influence of Erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater. Res. Bull. 106, 81–92 (2018)

    Article  CAS  Google Scholar 

  33. S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior. RSC Adv. 4, 1212–1224 (2014)

    Article  CAS  Google Scholar 

  34. B. Behera, P. Nayak, R.N.P. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401–410 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors also acknowledge Sophisticated Test and Instrumentation Centre (STIC), Cochin, India, and central research facility (CRF) of IIT(ISM), Dhanbad for extending the XRD and FE-SEM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Sarun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Yadav, A., Kumari, M. et al. Analysis of giant dielectric permittivity and electrical properties for energy storage devices through impedance spectroscopy in CaCu3Ti4O12. J Mater Sci: Mater Electron 33, 9395–9402 (2022). https://doi.org/10.1007/s10854-021-07338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07338-8

Navigation