Skip to main content

Advertisement

Log in

Structural investigation and giant dielectric response of CaCu3Ti4O12 ceramic by Nd/Zr co-doping for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High performance dielectric materials are highly required for practical application for energy storage technologies. In this work, high-k pristine and modified calcium copper titanate having nominal formula Ca0.95Nd0.05Cu3Ti4−xZrxO12 (x = 0.01, 0.03 & 0.10) were synthesized and characterized for structural and dielectric properties. Single phase formation of the synthesized compositions was confirmed by X-ray diffraction patterns and further analysed using Rietveld refinement technique. Phase purity of the synthesized ceramics was further confirmed by Energy-dispersive X-ray Spectroscopy (EDX) analysis. SEM images demonstrated that grain size of the modified CCTO ceramics was controlled by Zr4+ ions due to solute drag effect. Impedance spectroscopy was employed to understand the grain, grain boundaries and electrode contribution to the dielectric response. Nyquist plots were fitted with a 2R-CPE model which confirms the non-ideality of the system. Substitution of specific concentration of Nd and Zr improved the dielectric properties of high dielectric permittivity (ε′ ~ 16,902) and minimal tanδ (≤ 0.10) over a wide frequency range. The giant ε′ of the investigated system was attributed to internal barrier layer capacitance (IBLC) effect and reduced tanδ accredited to enhanced grain boundaries resistance due to substitution of Zr4+ ions at Ti4+ site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  2. M.M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Mechanochemical synthesis and giant dielectric properties of CaCu3Ti4O12. Appl. Phys. A 116, 1299–1306 (2014)

    Article  Google Scholar 

  3. V.P.B. Marques, A. Ries, A.Z. Simoes, M.A. Ramrez, J.A. Varela, E. Longo, Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum. Ceram. Int. 33, 1187–1190 (2007)

    Article  Google Scholar 

  4. S. G-Fritsch, T. Lebey, M. Boulous, B. Durand, Dielectric properties of CaCu3Ti4O12 based multiphased ceramics. J. Eur. Ceram. Soc. 26, 1245–1257 (2006)

    Article  Google Scholar 

  5. M.A. de la Rubia, P. Leret, A. Del Campo, R.E. Alonso, A.R. Lopez-Garcia, J.F. Fernandez, J. De Frutos, Dielectric behaviour of Hf-doped CaCu3Ti4O12 ceramics obtained by conventional synthesis and reactive sintering. J. Eur. Ceram. Soc. 32, 169–1699 (2012)

    Google Scholar 

  6. W.M. Hua, Z. Fu, W.Q. Li, Y. Chao, Synthesis of CaCu3Ti4O12 powders and ceramics by sol–gel method using decanedioic acid and its dielectric properties. J. Cent. South Univ. 19, 3385–3389 (2012)

    Article  Google Scholar 

  7. N. Banerjee, S.B. Krupanidhi, Low temperature synthesis of nano-crystalline CaCu3Ti4O12 through a fuel mediated autocombustion pathway. Curr. Nanosci. 6, 432–438 (2010)

    Article  Google Scholar 

  8. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    Article  Google Scholar 

  9. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struc. 1157, 607–615 (2018)

    Article  Google Scholar 

  10. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)

    Google Scholar 

  11. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)

    Article  Google Scholar 

  12. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)

    Google Scholar 

  13. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, Very low loss tangent and high dielectric permittivity in pure-CaCu3Ti4O12 ceramics prepared by a modified sol-gel process. J. Am. Ceram. Soc. 95, 1497–1500 (2012)

    Article  Google Scholar 

  14. R. Kashyap, O.P. Thakur, R.P. Tandon, Study of structural, dielectric and electrical conduction behaviour of Gd substituted CaCu3Ti4O12 ceramics. Ceram. Int. 38, 3029–3037 (2012)

    Article  Google Scholar 

  15. L. Feng, X. Tang, Y. Yan, X. Chen, Z. Jiao, G. Cao, Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping. Phys. Status Solidi A 203, R22–R24 (2006)

    Article  Google Scholar 

  16. C.H. Mu, P. Liu, Y. He, J.P. Zhou, H.W. Zhang, An effective method to decrease dielectric loss of CaCu3Ti4O12 ceramics. J. Alloys Compd. 471, 137–141 (2009)

    Article  Google Scholar 

  17. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, S. Rani, Effect of doping of alkaline metal ions on structural and electrical properties of Bi0.8M0.2FeO3-modified Na0.5Bi0.5TiO3 ceramics (M = Ca,Sr, and Ba. J. Alloys Compd. 747, 712–720 (2018)

    Article  Google Scholar 

  18. B. Castor, B. James Hedrick, in Industrial Minerals and Rocks, ed. by J. E. Kogel, N. C. Trivedi, J. M. Barker (Society for mining, Metallurgy, and Exploration, United State, 2006), pp. 769–792

    Google Scholar 

  19. L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, Dielectric and nonlinear current–voltage characteristics of rare–earth doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 110, 094101 (2011)

    Article  Google Scholar 

  20. L. Feng, X. Tang, Y. Yan, X. Chen, Z. Jiao, G. Cao, Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping. Phys. Status Solidi (a) 203, R22 (2006)

    Article  Google Scholar 

  21. B.S. Prakash, K.B.R. Varma, Microstructural and dielectric properties of donor doped (La3+) CaCu3Ti4O12 ceramics. J. Mater. Sci. Mater. Electron. 17, 899–907 (2006)

    Article  Google Scholar 

  22. T. Li, Y. Xue, Z. Chen, F. Chang, Dielectric characteristics and positron annihilation study of Eu2O3-doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 158, 58–62 (2009)

    Article  Google Scholar 

  23. C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28, 43–47 (2010)

    Article  Google Scholar 

  24. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1–3x/2Yb x Cu3Ti4O12 ceramics. J. Alloys Compd. 612, 103–109 (2014)

    Article  Google Scholar 

  25. J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Dielectric properties of Sm-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39, S149-S152 (2013)

    Google Scholar 

  26. Z. Xu, H. Qiang, Y. Chen, Z. Chen, Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu3Ti4O12 ceramics. Mater. Chem. Phys. 191, 1–5 (2017)

    Article  Google Scholar 

  27. Y. Wang, L. Ni, X.M. Chen, Effects of Nd-substitution on microstructures and dielectric characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 22, 345–350 (2012)

    Google Scholar 

  28. M.H. Wang, B. Zhang, F. Zhou, C. Yao, Microstructure and dielectric properties of Nd doped CaCu3Ti4O12 synthesized by sol–gel method. J. Sol-Gel. Sci. Technol. 69, 281–287 (2014)

    Article  Google Scholar 

  29. S. Mahajan, O.P. Thakur, C. Prakash, K. Sreeniwas, Effect of Zr on dielectric, ferroelectric and impedance properties of BaTiO3 ceramic. Bull. Mater. Sci. 34, 1483–1489 (2011)

    Article  Google Scholar 

  30. K.M. Sangwan, N. Ahlawat, R.S. Kundu, S. Rani, S. Rani, N. Ahlawat, Improved dielectric and ferroelectric properties of Mn doped Barium zirconium titanate (BZT) ceramics for energy storage applications. J. Phys. Chem. Solids 117, 158–166 (2018)

    Article  Google Scholar 

  31. Q.G. Chi, L. Gao, X. Wang, J.Q. Lin, J. Sun, Q. Lei, Effects of Zr doping on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloys Compd. 559, 45–48 (2013)

    Article  Google Scholar 

  32. K.M. Sangwan, N. Ahlawat, R.S. Kundu, S. Rani, S. Rani, N. Ahlawat, Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Cer. Int. https://doi.org/10.1016/j.ceramint.2018.03.039

  33. S. Rani, N. Ahlawat, R.S. Kundu, R. Punia, S. Kumar, K.M. Sangwan, N. Ahlawat, Structural and dielectric properties of Ca0.95Nd0.05Cu3Ti3.95Zr0.05O12 ceramic. Ferroelectrics 516, 156–166 (2017)

    Article  Google Scholar 

  34. J.R. Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–69 (1993)

    Article  Google Scholar 

  35. D.W. Kim, T.G. Kim, F.S. Hong, Low firing of CuO-doped anatase. Mater. Res. Bull. 34, 771–781 (1999)

    Article  Google Scholar 

  36. L.J. Liu, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, L. Fang, C.Z. Hu, Dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics modified with NiO, SnO2, SiO2, and Al2O3 additives. J. Mater. Sci. 47, 2294–2299 (2012)

    Article  Google Scholar 

  37. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti3.95Zn0.05O12 ceramic. Ceram. Int. 44, 5996–6001 (2018)

    Article  Google Scholar 

  38. J. Liu, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell–Wanger relaxation compounds ACaCu3Ti4O12 (A = Ca,Bi2∕3,Y2∕3,La2∕3). J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  39. J.C. Maxwell, Electricity and Magnetism, 1st edn. (Oxford University Press, Oxford, 1929)

    Google Scholar 

  40. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  41. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  42. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73, 94124–94126 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology, New Delhi for providing XRD facilities (FIST scheme). One of the author is thankful to the University Grants Commission, New Delhi for providing financial assistance through major research project (F. No. 41-853/2012 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Ahlawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Ahlawat, N., Sangwan, K.M. et al. Structural investigation and giant dielectric response of CaCu3Ti4O12 ceramic by Nd/Zr co-doping for energy storage applications. J Mater Sci: Mater Electron 29, 10825–10833 (2018). https://doi.org/10.1007/s10854-018-9150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9150-9

Navigation