Skip to main content
Log in

A comparative study on electrical conduction properties of Sr-substituted Ba1 − x Sr x Zr0.1Ti0.9O3 (x = 0.00–0.15) ceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lead-free polycrystalline Sr-substituted Ba1 − x Sr x Zr0.1Ti0.9O3 (BSZT) (x = 0.00–0.15) ceramics are synthesized by the high-temperature conventional solid-state reaction method. The Rietveld refinement of the X-ray diffraction pattern confirms the co-existence of tetragonal and cubic phase in the sample at x = 0.10, which is also confirmed from Raman spectroscopy. The surface micrographs show the formation of grains with well-defined grain boundaries and the significant enhancement in granular size with increasing Sr content. Moreover, the domain structure with “lamellar” and watermark characters is clearly observed for all the concentrations. The complex impedance analysis shows a significant increment in the net impedance of BSZT samples for the composition, x = 0.10. Exceptionally high value of impedance is attributed to the co-existence of two competing phases in the microscopic level. An enhancement in the impedance value is a consequence of reduction in the electrical conductivity of the sample. The modulus analysis confirms the presence of non-Debye-type relaxation in the material. The frequency gap (Δf) between the normalized master curve Z/Zm and M/Mm decreases with increasing Sr concentration, which indicates a reduction in the polarization in BSZT samples. This result is well consistent with the results obtained from the complex impedance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, London

    Google Scholar 

  2. Ha JY, Choi JW, Kang CY, Kim JS, Yoon SJ, Choi DJ, Kim HJ (2007) J Eur Ceram Soc 27:2727

    Article  Google Scholar 

  3. Jeon JH (2004) J Eur Ceram Soc 24:1045

    Article  CAS  Google Scholar 

  4. Zimmermann F, Voigts M, Weil C, Jakoby R, Wang P, Menesklou W, Ivers-Tiffée E (2001) J Eur Ceram Soc 21:2019

    Article  CAS  Google Scholar 

  5. Cole MW, Nothwang WD, Hubbard C, Ngo E, Ervin M (2003) J Appl Phys 93:9218

    Article  CAS  Google Scholar 

  6. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5

    Article  CAS  Google Scholar 

  7. Noda M, Yamada T, Seki K, Kamo T, Yamashita K, Funakubo H, Okuyama M (2010) IEEE Trans Ultrason Ferroelectr Freq Control 57:2221

    Article  Google Scholar 

  8. Maiti T, Guo R, Bhalla AS (2007) Appl Phys Lett 90:182901

    Article  Google Scholar 

  9. Chen H, Yang C, Fu C, Shi J, Zhang J, Leng W (2007) J Mater Sci Mater Electron 19:379

    Article  Google Scholar 

  10. Ciomaga CE, Buscaglia MT, Buscaglia V, Mitoseriu L (2011) J Appl Phys 110:114110

    Article  Google Scholar 

  11. Sun Z, Pu Y, Dong Z, Hu Y, Liu X, Wang P (2014) Ceram Int 40:3589

    Article  CAS  Google Scholar 

  12. Farhi R, Marssi M, Simon A, Ravez J (1999) Eur Phys J B 9:599

    Article  CAS  Google Scholar 

  13. Deluca M, Vasilescu CA, Ianculescu AC, Berger DC, Ciomaga CE, Curecheriu LP, Stoleriu L, Gajovic A, Mitoseriu L, Galassi C (2012) J Eur Ceram Soc 32:3551

    Article  CAS  Google Scholar 

  14. Tang XG, Chew KH, Chan HLW (2004) Acta Mater 52:5177

    Article  CAS  Google Scholar 

  15. Moura F, Simões AZ, Aguiar EC, Nogueira IC, Zaghete MA, Varela JA, Longo E (2009) J. Alloy. Compd. 479:280

    Article  CAS  Google Scholar 

  16. Bhaskar RS, Prasad RK, Ramachandra RMS (2011) J. Alloy. Compd. 509:1266

    Article  Google Scholar 

  17. Bhaskar RS, Prasad RK, Ramachandra RMS (2009) J. Alloy. Compd. 481:692

    Article  Google Scholar 

  18. Rani R, Singh S, Juneja JK, Raina KK, Prakash C (2011) Ceram Int 37:3755

    Article  CAS  Google Scholar 

  19. Chen CF, Reagor DW, Russell SJ, Marksteiner QR, Earley LM, Dalmas DA, Volz HM, Guidry DR, Papin PA, Yang P (2011) J Am Ceram Soc 94:3727

    Article  CAS  Google Scholar 

  20. Kumar M, Garg A, Kumar R, Bhatnagar MC (2008) Physica B 403:1819

    Article  CAS  Google Scholar 

  21. Liang D, Zhu X, Zhang Y, Shi W, Zhu J (2015) Ceram Int 41:8261

    Article  CAS  Google Scholar 

  22. Li Y, Cheng H, Xu H, Zhang Y, Yan P, Huang T, Wang C, Hu Z, Ouyang J (2016) Ceram Int 44:10191

    Article  Google Scholar 

  23. Tang XG, Wang XX, Chew K-H, Chan HLW (2005) Solid State Commun 136:89

    Article  CAS  Google Scholar 

  24. Chan NY, Choy SH, Wang DY, Wang Y, Dai JY, Chan HLW (2014) J Mater Sci-Mater El 25:2589

    Article  CAS  Google Scholar 

  25. Sutjarittangtham K, Intatha U, Eitssayeam S (2015) Electron Mater Lett 11:374

    Article  CAS  Google Scholar 

  26. Badapanda T, Sarangi S, Behera B, Parida S, Saha S, Sinha TP, Ranjan R, Sahoo PK (2015) J Eur Ceram Soc 645:586

    CAS  Google Scholar 

  27. Yao Z, Liu H, Liu Y, Wu Z, Shen Z, Liu Y, Cao M (2008) Mater Chem Phys 109:475–481

    Article  CAS  Google Scholar 

  28. Cai W, Fu C, Gao J, Chen H (2009) J Alloy Compd 480:870

    Article  CAS  Google Scholar 

  29. Ranjan R, Kumar R, Kumar N, Behera B, Choudhary RNP (2011) J Eur Ceram Soc 509:6388

    CAS  Google Scholar 

  30. Hosono Y, Harada K, Yamashita Y (2001) Jpn J Appl Phys 40:5722

    Article  CAS  Google Scholar 

  31. Kumar A, Singh BP, Choudhary RNP, Thakur AK (2006) Mater Chem Phys 99:150

    Article  CAS  Google Scholar 

  32. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics press, London

    Google Scholar 

  33. Liang P, Li F, Chao X, Yang Z (2015) Ceram Int 41:11314

    Article  CAS  Google Scholar 

  34. Pattanayak S, Choudhary RNP, Das PR, Shannigrahi SR (2014) Ceram Int 40:7983

    Article  CAS  Google Scholar 

  35. Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2000) Synth Met 122:455

    Article  Google Scholar 

  36. Liang P, Chao X, Yang Z (2014) J Appl Phys 116:044101

    Article  Google Scholar 

  37. Shulman HS, Damjanovic D, Setter N (2000) J Am Ceram Soc 83:528

    Article  CAS  Google Scholar 

  38. Tiwari B, Choudhary RNP (2010) J Eur Ceram Soc 493:1

    CAS  Google Scholar 

  39. Kaushal A, Olhero SM, Singh B, Fagg DP, Bdikin I, Ferreira JMF (2014) Ceram Int 40:10593

    Article  CAS  Google Scholar 

  40. Selvasekarapandian S, Vijaykumar M (2003) Mater Chem Phys 80:29

    Article  CAS  Google Scholar 

  41. Nobre MAL, Lanfredi S (2003) J Appl Phys 93:5576

    Article  CAS  Google Scholar 

  42. Gerhardt R (1994) J Phys Chem Solids 55:1491

    Article  CAS  Google Scholar 

  43. Tiwari B, Choudhary RNP (2008) J Phys Chem Solids 69:2852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tanusree Mondal acknowledges the Indian Institute of Technology (ISM), Dhanbad, India, for providing the Junior Research Fellowship. Sayantani Das acknowledges the University Grants Commission (UGC), India, for providing the financial support in the form of Research Fellowship in Science for Meritorious Students (RFSMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Sarun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, T., Majee, B.P., Das, S. et al. A comparative study on electrical conduction properties of Sr-substituted Ba1 − x Sr x Zr0.1Ti0.9O3 (x = 0.00–0.15) ceramics. Ionics 23, 2405–2416 (2017). https://doi.org/10.1007/s11581-017-2085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2085-y

Keywords

Navigation