Skip to main content
Log in

Influence of Bi3+ ions doping on the structure and magnetic properties of Cu-Co nanoferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, copper-cobalt nanoferrites doped with Bi3+ ions were prepared by sol–gel method. The spinel structure of the samples was analyzed by X-ray diffraction (XRD). The average crystallite size was reduced from 108 nm to 67 nm by using the Scherrer formula. Fourier transform infrared spectroscopy revealed the absorption band and its specific location of the sample in a certain range; at the same time, it can be seen that the absorption band moved to the high-frequency direction as the Bi3+ content increased. Scanning electron microscope (SEM) showed that the samples were spherical cubic crystal particles. Energy dispersive X-ray spectroscopy characterized the elements contained in the samples, demonstrating the successful doping of Bi3+. Vibrating sample magnetometer is mainly used to analyze the magnetic properties of the samples. The results showed that the remanent magnetization and coercivity decreased as the Bi3+ content increased. However, due to the superexchange effect, the saturation magnetization firstly increased and then decreased as the Bi3+ content increased. When the doping amount is 0.025, the sample has the best magnetic properties, with higher saturation magnetization and coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.S. Kumar, K.V. Kumar, Synthesis and structural properties of bismuth doped cobalt nanoferrites preparedby sol-gel combustion method. World J Nano Sci Eng 5, 140–151 (2015)

    Article  Google Scholar 

  2. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary, Structural, Magnetic and optical studies of nickel ferrite thin films. Adv. Mater. 3, 21–28 (2012). https://doi.org/10.5185/amlett.2011.6280

    Article  CAS  Google Scholar 

  3. S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nano crystalline Mn-Zn ferrites. Adv. Mater. 4, 373–377 (2013). https://doi.org/10.5185/amlett

    Article  Google Scholar 

  4. R. Skomski, Nanomagnetics. J. Phys. Condens. Matter. (2003). https://doi.org/10.1088/0953-8984/15/20/202

    Article  Google Scholar 

  5. S. El Shabrawy, C. Bocker, D. Tzankov, M. Georgieva, R. Harizanova, C. Rüssel, The effect of zinc substitution on the magnetism of magnesium ferrite nanostructures crystallized from borate glasses. Ceram. Int. 43, 3804–3810 (2017)

    Article  CAS  Google Scholar 

  6. I. Habib, A. Sajawal, G. Murtaza, M. Ishfaq, N. Muhammad, G. Farid, S. Sharif, M.N. Akhtar, S. Salim, Mater. Res. Express. 5, 075018 (2018)

    Article  CAS  Google Scholar 

  7. T. Alves, R. Augustine, P. Que’ffe’lec, M. Grzeskowiak, B. Poussot, J.-M. Laheurte, Polymeric ferrite-loaded antennas for on-body communications. Microw. Opt. Technol. Lett. 51, 11 (2009)

    Article  Google Scholar 

  8. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017)

    Article  CAS  Google Scholar 

  9. A. Meidanchi, O. Akhavan, S. Khoei, A.A. Shokri, Z. Hajikarimi, N. Khansari, ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater. Sci. Eng. C 46, 394–399 (2015)

    Article  CAS  Google Scholar 

  10. M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia et al., Enhancement of the magnetic properties of Ni-Cu-Zn ferrites by the nano-magnetic Al3+ ions substitution. J All Comp. 509, 2473–2477 (2011)

    Article  CAS  Google Scholar 

  11. P.P. Sarangi, S.R. Vadera, M.K. Patra et al., Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technol. 203(2), 348–353 (2010)

    Article  CAS  Google Scholar 

  12. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  CAS  Google Scholar 

  13. M. Sangmanee, S. Maensiri, Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl. Phys. A 97, 167–177 (2009)

    Article  CAS  Google Scholar 

  14. T. Dippong, E.A. Levei, I.G. Deac, E. Neag, O. Cadar, Influence of Cu2+, Ni2+, and Zn2+ Ions doping on the structure, morphology, and magnetic properties of Co-ferrite embedded in SiO2 matrix obtained by an innovative sol–gel route. Nanomaterials 10, 580 (2020)

    Article  CAS  Google Scholar 

  15. A.C.F.M. Costa, M.R. Morelli, R.H.G.A. Kiminami, Microstructure and magnetic properties of Ni1–xZnxFe2O4synthesized by combustion reaction. J. Mater. Sci. 42(3), 779–783 (2007)

    Article  CAS  Google Scholar 

  16. M. George, A. Mary John, S.S. Nair et al., Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  CAS  Google Scholar 

  17. A.S. Mukasyan, P. Epstein, P. Dinka, Solution combustion synthesis of nanomaterials. Proc Combust Inst. 31(2), 1789–1795 (2007)

    Article  CAS  Google Scholar 

  18. C.A.F. Vaz, J. Hoffman, C.H. Anh, R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)

    Article  CAS  Google Scholar 

  19. S.E. Shirsath, X. Liu, Y. Yasukawa, S. Li, A. Morisako, Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6, 30074 (2016)

    Article  CAS  Google Scholar 

  20. K.M. Batooa, D. Salahb, G. Kumar et al., Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016)

    Article  CAS  Google Scholar 

  21. J. Amighian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C 3, 3188–3192 (2011)

    Article  CAS  Google Scholar 

  22. Y. Tian, Q. Fu, F. Xue et al., Enhancement of dielectric and magnetic properties in phase pure, dense BiFeO3 nanoceramics synthesized by spark plasma sintering techniques. J Mater Sci. 29, 17170–17177 (2018)

    CAS  Google Scholar 

  23. Jun Xiang, Guangzhen Zhou, Xiangqian Shen, Yanqiu Chu, Yintao Guo, Effect of Bi2O3 addition on structure and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers. J Sol-Gel Sci Technol 62, 186–192 (2012)

    Article  CAS  Google Scholar 

  24. S. Anjum, F. Sehar, M.S. Awan, R. Zia, Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite. Appl. Phys. A. 122, 436 (2016)

    Article  CAS  Google Scholar 

  25. Zein K. Heiba, Mohamed Bakr Mohamed, Adel Maher Wahba, L. Arda, Magnetic and structural properties of nanocrystalline cobalt-substituted magnesium-manganese ferrite. J. Supercond. Nov. Magn. (2015). https://doi.org/10.1007/s10948-015-3069-7

    Article  Google Scholar 

  26. L.-Z. Li, X.-X. Zhong, R. Wang, Tu. Xiao-Qiang, L. Peng, Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders. J. Magn. Magn. Mater. 98, 98–103 (2017)

    Article  CAS  Google Scholar 

  27. B. Rajesh Babu, M.S.R. Prasad, K.V. Ramesh, Y. Purushotham, Structural and Magnetic properties of Ni0.5Zn0.5AlxFe2-xO4 nano ferrite system. Mater. Chem. Phys. 586, 585–591 (2014)

    Article  CAS  Google Scholar 

  28. Andris Sutka, Gundars Mezinskis, Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)

    Article  Google Scholar 

  29. Liqiong Shao, Aimin Sun, Yu. Lichao, Zhuo Zuo et al., Cr3+ doped nanocrystalline nickel–magnesium–cobalt spinel ferrite: microstructural and magnetic. Appl. Phys. A. 127, 199 (2021)

    Article  CAS  Google Scholar 

  30. A.T. Ravichandran, J. Srinivas, R. Karthick, A. Manikanda, A. Baykal, Ceram. Int. 44, 13247–13252 (2018)

    Article  CAS  Google Scholar 

  31. S. Rajmohan, V. Jeseentharani, A. Manikandan, J. Pragasam, Nanosci. Nanotechnol. Lett. 8, 393–398 (2016)

    Article  Google Scholar 

  32. R.A. Torquato, F.A. Portela, L. Gama, D.R. Cornejo, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Avaliação da microestrutura e das propriedades magnéticas de ferritas Ni-Zn dopadas com cobre (Evaluation of microstructure and magnetic properties of Ni-Zn ferrite doped with copper). Cerâmica 54, 55–62 (2008)

    Article  CAS  Google Scholar 

  33. K. Praveena, B. Radhika, S. Srinath, Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng. 76, 1–7 (2014)

    Article  CAS  Google Scholar 

  34. S.E. Shirsath, R.H. Kadam, S.M. Patange et al., Appl. Phys. Lett. 100(4), 1541 (2012)

    Article  CAS  Google Scholar 

  35. M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications. Ceram Int 43, 17032–17040 (2017)

    Article  CAS  Google Scholar 

  36. W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica. B. 534, 17–21 (2018)

    Article  CAS  Google Scholar 

  37. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  CAS  Google Scholar 

  38. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)

    Article  CAS  Google Scholar 

  39. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8-xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  40. Y. Zhang, A. Sun, Z. Suonan, The structural, magnetic, and optical properties of Ni-Mg-Zn ferrite prepared with different complexing agents via sol–gel method. J Mater Sci: Mater Electron. 32, 13350–13368 (2021)

    CAS  Google Scholar 

  41. H.M. Zaki, H.A. Dawoud, Far-infrared spectra for copper-zinc mixed ferrites. Physica B 405, 4476–4479 (2010)

    Article  CAS  Google Scholar 

  42. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nano crystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Clin. Medical Phys 110, 053910 (2011)

    Article  CAS  Google Scholar 

  43. Nanzhaxi Suo, Aimin Sun, Yu. Lichao, Zhuo Zuo, Xiqian Zhao, Wei Zhang, Yanchun Zhang, Liqiong Shao, Yu. Tengxuan, Preparation and study of lattice structure and magnetic properties of Bi3+ ion-doped Ni–Mg–Co ferrites by sol–gel auto-combustion method. J Sol-Gel Sci Technol. 95, 360–374 (2020)

    Article  CAS  Google Scholar 

  44. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrites nanoparticles. Cera Inter 38, 3625–3634 (2012)

    Article  CAS  Google Scholar 

  45. A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J Magn Magn Mater. 422, 328–336 (2017)

    Article  CAS  Google Scholar 

  46. S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J Mol Struct. 1038, 45–51 (2013)

    Article  CAS  Google Scholar 

  47. C.N. Chervin, B.J. Clapsaddle, H.W. Chiu et al., Role of cyclic ether and solvent in a non-alkoxide sol–gel synthesis of yttriastabi-lized zirconia nanoparticles. Chem. Mater. 18, 4865–4874 (2006)

    Article  CAS  Google Scholar 

  48. GuiLin Song, XiaoHui Zhou et al., Effect of Gd and Co co-doping on elect-ric transport and ferromagnetic properties of BiFeO3 ceramics. Acta Phys. Sin. 61, 177501 (2012)

    Article  Google Scholar 

  49. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, Mane DR Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol–gel method. J. Alloys Compd. 549, 213–220 (2013)

    Article  CAS  Google Scholar 

  50. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Cu0.6Zn0.4CrxFe2-xO4 (0≤x≤10) prepared via sol-gel Au-to-combustion method. J. Mol. Struct. 1012, 12–167 (2012)

    Article  CAS  Google Scholar 

  51. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2012)

    Article  CAS  Google Scholar 

  52. D. Fritsch, C. Ederer, Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles. Phys. Rev. B. 82, 104–117 (2010)

    Article  CAS  Google Scholar 

  53. J.M.D. Coey, Rare earth-iron permanent magnets. ChemInform (2010). https://doi.org/10.1002/chin

    Article  Google Scholar 

  54. Q. Lin, Y. He, J. Xu, J. Lin, Z. Guo, F. Yang, Effects of Al3+ substitution on structural and magnetic behavior of CoFe2O4 ferrite Nanomaterials. Nanomaterials 750, 1–11 (2018)

    Google Scholar 

  55. J. Lin, Y. He, Q. Lin, R. Wang, H. Chen, Microstructural and Mössbauer spectroscopy studies of Mg1-xZnxFe2O4 (x = 0.5, 0.7) nanoparticles. J Spectrosc 2014, 540319 (2014)

    Article  Google Scholar 

  56. P. Motavallian, B. Abasht, H. Abdollah-Pour, Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)

    Article  CAS  Google Scholar 

  57. R. Sharma, V. Kumar, S. Bansal et al., Boosting the catalytic performance of pristine CoFe2O4 with yttrium(Y3+) inclusion in the spinel structure. Mater. Res. Bull. 90, 94–103 (2017)

    Article  CAS  Google Scholar 

  58. R. Sharma, P. Thakur, P. Sharma, V. Sharma, Ferrimagnetic Ni2+doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd. 704, 7–17 (2017)

    Article  CAS  Google Scholar 

  59. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YJ: contributed to experiment, investigation, conceptualization, writing–original draft, and visualization; AS: checked the manuscript; XH helped checking the table, JW helped in measurement of data and experimental process; YZ and LS helped checking the figure.

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Sun, A., Huang, X. et al. Influence of Bi3+ ions doping on the structure and magnetic properties of Cu-Co nanoferrite. J Mater Sci: Mater Electron 32, 27882–27898 (2021). https://doi.org/10.1007/s10854-021-07170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07170-0

Navigation