Skip to main content
Log in

Dielectric and impedance spectroscopy of (CoNiO3)0.5–(BaTiO3)0.5 solid solution for device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline sample (CoNiO3)0.5(BaTiO3)0.5 has been successfully synthesized by conventional high-temperature solid state reaction route. The room temperature X-ray Diffraction (XRD) data conforms single phase new compound. The dielectric, impedance and transport behaviour of the sample has been analysed in detail. It is observed in the present study that the material possess high dielectric constant and low loss factor at room temperature may be suitable for microwave applications. The signatures of grain and grain boundary contribution have been noticed from impedance spectroscopy which confirms the presence of different types of charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Wul, J.M. Goldman, C.R. Acad, Sci. URSS 46, 139 (1945)

    Google Scholar 

  2. L.V. Leonel, A. Righi, W.N. Mussel, J.B. Silva, N.D.S. Mohallem, Ceram. Int. 37(4), 1259–1264 (2011)

    Article  CAS  Google Scholar 

  3. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005)

    Article  CAS  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  5. C. W. Nan et at., J. Appl. Phys. 103, 031101 (2008).

  6. G.A. Prinz, Science 282, 1660 (1998)

    Article  CAS  Google Scholar 

  7. S. A. Wolf et at., Science 294, 1488 (2001).

  8. T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11, 1018 (1975)

    Article  Google Scholar 

  9. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977)

    Google Scholar 

  10. J.F. Scott, C.A. Paz De Araujo, Science 246, 1400 (1989)

    Article  CAS  Google Scholar 

  11. O. Auciello, J.F. Scott, R. Ramesh, Phys. Taday 51, 22 (1998)

    Article  CAS  Google Scholar 

  12. K.M. Rabe, C.H. Ahn, J.-M. Triscone, Physics of Ferroelectrics (Springer-Verlag, Berlin, 2007)

    Google Scholar 

  13. R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006).

  14. W. Eerenstein et at., Nature Mater. 6, 351 (2007).

  15. J. J. Yang et at., Appl. Phys. Lett. 94, 212504 (2009)

  16. R.F. Zhang, C.Y. Deng, L. Ren, Z. Li, J.P. Zhou, Mater. Res. Bull. 48(10), 4100–4104 (2013)

    Article  CAS  Google Scholar 

  17. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, J. Mater. Sci.: Mater. Electron. 24(6), 1900–1904 (2013)

    CAS  Google Scholar 

  18. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, J. Magn. Magn. Mater. 399, 109–117 (2016)

    Article  CAS  Google Scholar 

  19. T. Yamauchi, M. Isobe, Y. Ueda, Solid State Sci. 7, 874 (2005)

    Article  CAS  Google Scholar 

  20. C.F. Windisch Jr., K.F. Ferris, G.J. Exarhos, Synthesis and characterization of transparent conducting oxide, cobalt–nickel spinel films. J. Vac. Sci. Technol. A 19(4), 1647 (2001)

    Article  CAS  Google Scholar 

  21. Yongxing Wei, Changqing Jin, Yiming Zeng, Xiaotao Wang, Dong Gao, Xiaoli Wang, Ceramics International, DOI: https://doi.org/10.1016/j.ceramint.2017.09.030

  22. B. D. Cullity, Elements of X-ray Diffraction (Addison Wesley, Reading, 1978).

  23. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, J. Alloys Compd. 788, 1193–1202 (2019)

  24. Y.A. Alsabah, A.A. Elbadawi, M.A. Siddig, M.I. Mohammed, Int. J. Sci. Nat. 6(1), 56–62 (2015)

    CAS  Google Scholar 

  25. D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757–6762 (2010)

    Article  CAS  Google Scholar 

  26. S. Chanda, S. Saha, A. Dutta, A.S. Mahapatra, P.K. Chakrabarti, U. Kumar, T.P. Sinha, Solid State Sci. 37, 55–63 (2014)

    Article  CAS  Google Scholar 

  27. J.W. Chen, K.R. Chiou, A.C. Hsueh, C.R. Chang, RSC Adv. 9, 12319–12324 (2019)

    Article  CAS  Google Scholar 

  28. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)

    Article  CAS  Google Scholar 

  29. B. Tilak, American Journal of Materials Science 2, 110 (2012)

    Article  Google Scholar 

  30. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 62, 1999 (2001)

    Article  CAS  Google Scholar 

  31. D.K. Mahato, A. Dutta, T.P. Sinha, Indian J. Pure Appl. Phys. 49, 613 (2011)

    Google Scholar 

  32. G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Solid State Ionics 76, 47 (1995)

    Article  CAS  Google Scholar 

  33. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979–982 (1982)

    Google Scholar 

  34. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  CAS  Google Scholar 

  35. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  36. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B. 56, 387 (2007)

    Google Scholar 

  37. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  38. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J.Appl. Phys. 106 (2009) 024102

  39. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Appl Phys A 108, 593 (2012)

    Article  CAS  Google Scholar 

  40. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  41. J.R. Macdonald, Solid State Ionics 13, 147 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Parida or B. N. Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, R., Saikia, N., Parida, R.K. et al. Dielectric and impedance spectroscopy of (CoNiO3)0.5–(BaTiO3)0.5 solid solution for device applications. J Mater Sci: Mater Electron 32, 27698–27709 (2021). https://doi.org/10.1007/s10854-021-07152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07152-2

Navigation