Skip to main content
Log in

Electrical conductivity and dielectric analysis of Ba0.9Ag0.1TiO3 compound

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research paper, our central focus is upon investigating structural and electrical properties of polycrystalline Ba0.9Ag0.1TiO3 powder which was fabricated through standard solid-state reaction technique. X-ray diffraction analysis at room temperature confirmed that the component crystallizes in both tetragonal and orthorhombic structures. The electrical response was explored by complex impedance spectroscopy in the temperature range of 540 K–620 K and frequency from 67. 5 Hz to 1 MHz. The findings demonstrated that the variation of the imaginary part of impedance (Z'') as a function of the real one (Z') at various temperatures presented semicircle arcs. An electrical similar circuit was set forward to interpret the impedance data. The results obtained from the temperature dependence of the exponent s suggest that the transport process of the charge carriers in the compound Ba0.9Ag0.1TiO3 follows the correlated barrier hopping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.L. Zhang, X.S. Wang, H. Liu, X. Yao, Structural and dielectric properties of BaTiO3-CaTiO3-SrTiO3 ternary system ceramics. J. Am. Ceram. Soc. 93, 1049 (2010)

    Article  Google Scholar 

  2. H. Takahashi et al., Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys 45, L30–L32 (2005)

    Article  Google Scholar 

  3. J. Kulawik, D. Szwagierczak, B. Groger, Investigations of properties of ceramic materials with perovskite structure in chosen electronic applications. J. Bull. Pol. Ac. 55, 293–297 (2007)

    Google Scholar 

  4. B. Matthias, A. von Hippel, Domain structure and dielectric response of barium titanate single crystals. J. Phys. Rev. 73, 1378–1384 (1948)

    Article  ADS  Google Scholar 

  5. M.E. Caspari, W.J. Merz, The electromechanical behavior of BaTiO3 single-domain crystals. J. Phys. Rev. 80, 1082–1089 (1950)

    Article  ADS  Google Scholar 

  6. J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. J. Appl. Phys. Lett. 99, 092901 (2011)

    Article  ADS  Google Scholar 

  7. Y. Tian, L. Wei, X. Chao, Z. Liu, Z. Yang, Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J. Am. Ceram. Soc. 96, 496–502 (2013)

    Article  Google Scholar 

  8. M.C. Ehmke, F.H. Schader, K.G. Webber, J. Rodel, J.E. Blendell, K.J. Bowman, Stress, temperature and electric field effects in the lead-free (Ba, Ca)(Ti, Zr) O3 piezoelectric system. J. Acta Mater. 78, 37–45 (2014)

    Article  ADS  Google Scholar 

  9. M. Okutan, E. Basaran, H.I. Bakan, F. Yakuphanoglu, AC conductivity and dielectric properties of Co-doped TiO2. J. Phys. B. 364, 300–305 (2005)

    Article  Google Scholar 

  10. H.M. Rietfeld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

    Article  Google Scholar 

  11. M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Polymorphic phase transition and morphotropic phase boundary in Ba1−xCaxTi1−yZryO3 ceramics. J. Appl. Phys A. 123, 583 (2017)

    Article  ADS  Google Scholar 

  12. T. Roismel, J. Rodriguez-Carvajal, Program Fullprof, Laboratoire de Chimie du Solide Inorganique et moléculaire 4MR6511, CNRS-Université de rennes. Laboratoire Brillouin (CEA-CNRS), version 3. 70, May2004, LLB-LCSIM, March (2005).

  13. M.-S. Yoon, H.M. Jang, Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 system. J. Appl. Phys. 77, 3991 (1995)

    Article  ADS  Google Scholar 

  14. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. J. Ceram. Int. 39, 5695–5704 (2013)

    Article  Google Scholar 

  15. P. Kumari, J. Manam, Enhanced red emission on co-doping of divalent ions (M2+= Ca2+, Sr2+, Ba2+) in YVO 4: Eu3+ phosphor and spectroscopic analysis for its application in display devices. J. Spectrochim. Acta A. 152, 109–118 (2016)

    Article  ADS  Google Scholar 

  16. A. Taylor, X-Ray Metallography (Wiley, New York, 1961), pp. 334–335

    Google Scholar 

  17. M. Abdessalem, I. Kriaa, A. Aydi, N. Abdelmoula, Large electrocaloric effect in lead-free Ba1-xCaxTi1-yZryO3 ceramics under strong electric field at room-temperature. J. Ceram. Int. 44, 13595–13601 (2018)

    Article  Google Scholar 

  18. A. BenHafsia, N. Rammeh, M. Farid, M. Khitouni, Electrical conductivity and dielectric study of LaBaFe0.5Zn0.5MnO6−δ compound. J. Ceram. Int. 42, 3673–3680 (2016)

    Article  Google Scholar 

  19. M. Abdessalem, A. Aydi, N. Abdelmoula, Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca0.1Ti0.95Zr0.05O3 ceramic. J. Alloys Compd. 774, 685–693 (2019)

    Article  Google Scholar 

  20. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley Interscience, New York, 2005), p. 14

    Book  Google Scholar 

  21. J.-B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy. J. Electrochim. Acta. 51, 1473–1479 (2006)

    Article  Google Scholar 

  22. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. J. Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  23. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102–024112 (2009)

    Article  ADS  Google Scholar 

  24. S. Behera, P.R. Das, P. Nayak, S.K. Patri, Structural and electrical properties of Na2Pb2Dy2W2Ti4Ta4O30 ceramic. J. Electron. Mater. 46, 1201–1209 (2017)

    Article  ADS  Google Scholar 

  25. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, Phase transformation and impedance spectroscopic study of Ba substituted Na0.5Bi0.5TiO3 ceramics. J. Alloy. Compd. 676, 452–460 (2016)

    Article  Google Scholar 

  26. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)

    Article  ADS  Google Scholar 

  27. D.C. Sinclair, A.R. West, Effect of atmosphere on the PTCR properties of BaTiO3 ceramics. J. Mater. Sci. 29, 6061–6068 (1994)

    Article  ADS  Google Scholar 

  28. N. Nallamuthua, I. Prakasha, N. Satyanarayanaa, M. Venkateswarlu, Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol–gel route. J. Alloys Compd. 509, 1138 (2011)

    Article  Google Scholar 

  29. A. Ghosh, D. Chakravorty, Electrical conductivity in semiconducting CuO-Bi2O3-P2O5 glasses. J. Phys. Condens. Matter. 2, 5365–5372 (1990)

    Article  ADS  Google Scholar 

  30. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. J. Solid State Ionics. 146, 329 (2002)

    Article  Google Scholar 

  31. C. León, A. Rivera, A. Varez, J. Sanz, J. Santamaria, K.L. Ngai, Origin of constant loss in ionic conductors. J. Phys Rev Lett. 86, 1279 (2001)

    Article  ADS  Google Scholar 

  32. S.R. Elliott, Frequency-dependent conductivity in ionic glasses: a possible model. J. Solid. State. Ionics. 27, 131 (1988)

    Article  Google Scholar 

  33. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. J. Phys. Rev. B. 41, 1479 (1990)

    Article  ADS  Google Scholar 

  34. S. Mollah, K.K. Som, K. Bose, B.K. Chaudri, AC conductivity in Bi4Sr3Ca3CuyOx (y = 0–5) and Bi4Sr3Ca3−zLizCu4Ox (z = 0.1–1.0) semiconducting oxide glasses. J. Phys. 74, 931 (1993)

    Google Scholar 

  35. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Frequency-dependent conductivity in lithium-diffused and annealed GaAs. J. Phys. B. 340, 324–328 (2003)

    Article  Google Scholar 

  36. A.R. Long, Frequency-dependent loss in amorphous semiconductors. J. Adv. Phys. 31, 553–637 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ksentini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksentini, I., Abdessalem, M.B., Cheikhrouhou-Koubaa, W. et al. Electrical conductivity and dielectric analysis of Ba0.9Ag0.1TiO3 compound. Appl. Phys. A 126, 939 (2020). https://doi.org/10.1007/s00339-020-04116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04116-x

Keywords

Navigation