Skip to main content
Log in

Structural, spectral, dielectric, and magnetic properties of indium substituted Cu0.5Zn0.5Fe2−xO4 magnetic oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of indium on the properties of Cu0.5Zn0.5Fe2O4 nano ferrites synthesized by sol–gel auto-combustion technique was studied. X-ray diffraction (XRD) analysis demonstrated that pure and substituted ferrites possessed cubic spinel structure. The lattice parameter increases with the inclusion of In3+ for x ≤ 0.16 and decreases subsequently. A linear decrease in crystallite size was found as concentration of indium increased. X-ray density, strain, and dislocation density were increased as indium content increases. Hopping lengths as well as radii of A and B sites revealed increasing behavior up to x = 0.16 and decreased thereafter. The spectral bands indicated the formation of spinel structure. The band positions were altered with the increase of In3+ contents. The inclusion of indium ions increases the value of dielectric parameters while magnetic parameters decreased. This increase in dielectric parameters and decrease in magnetization proposed that synthesized magnetic oxides may have potential in the fabrication of switching and high-frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.-A. Han et al., Critical behavior in Ni0.15Cu0.15Zn0.7Fe2O4 spinel ferrite. Ceram. Int. 45(11), 14322–14326 (2019)

    Article  CAS  Google Scholar 

  2. J. Hu et al., Characterization of texture and magnetic properties of Ni0.5Zn0.5TixFe2−xO4 spinel ferrites. J. Magn. Magn. Mater. 489, 165411 (2019)

    Article  CAS  Google Scholar 

  3. N. Hamdaoui et al., Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6−xCdxMg0.4Fe2O4 spinel ferrite (0≤ x ≤ 0.4). J. Alloys Compds 803, 964–970 (2019)

    Article  CAS  Google Scholar 

  4. D. Jnaneshwara et al., Role of Cu2+ ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochim. Acta A 132, 256–262 (2014)

    Article  CAS  Google Scholar 

  5. M. Houshiar, L. Jamilpanah, Effect of Cu dopant on the structural, magnetic and electrical properties of Ni–Zn ferrites. Mater. Res. Bull. 98, 213–218 (2018)

    Article  CAS  Google Scholar 

  6. R.A. Jasso-Terán et al., Synthesis, characterization and hemolysis studies of Zn(1–x)CaxFe2O4 ferrites synthesized by sol–gel for hyperthermia treatment applications. J. Magn. Magn. Mater. 427, 241–244 (2017)

    Article  Google Scholar 

  7. X. Wu et al., Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications. J. Magn. Magn. Mater. 401, 1093–1096 (2016)

    Article  CAS  Google Scholar 

  8. W.-S. Chen et al., Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders–epoxy resin coatings. Ceram. Int. 37(7), 2347–2352 (2011)

    Article  CAS  Google Scholar 

  9. M.N. Akhtar et al., Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  10. S. Akhter et al., Glassy behavior of diluted Cu–Zn ferrites. J. Magn. Magn. Mater. 452, 261–265 (2018)

    Article  CAS  Google Scholar 

  11. M. Junaid et al., Impact of indium substitution on dielectric and magnetic properties of Cu0.5Ni0.5Fe2−xO4 ferrite materials. Ceram. Int. 45(10), 13431–13437 (2019)

    Article  CAS  Google Scholar 

  12. A. Raghavender, S.E. Shirsath, K.V. Kumar, Synthesis and study of nanocrystalline Ni–Cu–Zn ferrites prepared by oxalate based precursor method. J. Alloys Compds 509(25), 7004–7008 (2011)

    Article  CAS  Google Scholar 

  13. S. Mahmud et al., Influence of microstructure on the complex permeability of spinel type Ni–Zn ferrite. J. Magn. Magn. Mater. 305(1), 269–274 (2006)

    Article  CAS  Google Scholar 

  14. S.E. Shirsath et al., Enhanced magnetic properties of Dy3+ substituted Ni–Cu–Zn ferrite nanoparticles. Appl. Phys. Lett. 100(4), 042407 (2012)

    Article  Google Scholar 

  15. M. Hashim et al., Influence of Cr3+ ion on the structural, AC conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite. Ceram. Int. 39(2), 1807–1819 (2013)

    Article  CAS  Google Scholar 

  16. S. Akhter et al., Magnetic and magnetocaloric properties of Cu1−xZnxFe2O4 (x = 0.6, 0.7, 0.8) ferrites. J. Magn. Magn. Mater. 367, 75–80 (2014)

    Article  CAS  Google Scholar 

  17. S. Amor et al., Modulation of magnetism and study of impedance and alternating current conductivity of Zn0.4Ni0.6Fe2O4 spinel ferrite. J. Mol. Struct. 1184, 298–304 (2019)

    Article  CAS  Google Scholar 

  18. M.M. Abutalib, A. Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J. Organomet. Chem. 918, 121309 (2020)

    Article  CAS  Google Scholar 

  19. M.M. Abutalib, A. Rajeh, Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J. Mater. Sci. Mater. Electron. 31(12), 9430–9442 (2020)

    Article  CAS  Google Scholar 

  20. A.M. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 581, 123821 (2019)

    Article  CAS  Google Scholar 

  21. S. Ata-Allah, M. Yehia, Transport properties and conduction mechanisms in CuFe2O4 and Cu1−xZnxGa0.3Fe17O4 compounds. Physica B 404(16), 2382–2388 (2009)

    Article  CAS  Google Scholar 

  22. B. Cruz-Franco et al., Magnetic properties of nanostructured spinel ferrites. IEEE Trans. Magn. 50(4), 1–6 (2014)

    Article  Google Scholar 

  23. S. Yunus et al., Neutron diffraction studies of the diluted spinel ferrite ZnxMg0.75−xCu0.25Fe2O4. J. Magn. Magn. Mater. 232(3), 121–132 (2001)

    Article  CAS  Google Scholar 

  24. X. Zhu et al., A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: structural and magnetic properties. Ceram. Int. 47(11), 15173–15179 (2021)

    Article  CAS  Google Scholar 

  25. T. Ajeesha et al., Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Physica B 606, 412660 (2021)

    Article  CAS  Google Scholar 

  26. Yunasfi et al., Synthesis of NiCexFe(2−x)O4 (0 ≤ x ≤ 0.05) as microwave absorbing materials via solid-state reaction method. J. Magn. Magn. Mater. 532, 167985 (2021)

    Article  CAS  Google Scholar 

  27. M. Junaid et al., Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li–Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016)

    Article  CAS  Google Scholar 

  28. J. Xie et al., Microwave-absorbing properties of NiCoZn spinel ferrites. J. Magn. Magn. Mater. 314(1), 37–42 (2007)

    Article  CAS  Google Scholar 

  29. S.E. Shirsath et al., Frequency, temperature and In3+ dependent electrical conduction in NiFe2O4 powder. Powder Technol. 212(1), 218–223 (2011)

    Article  CAS  Google Scholar 

  30. M. Hashim et al., High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. J. Phys. Chem. Solids 112, 29–36 (2018)

    Article  CAS  Google Scholar 

  31. C.C. Naik, A.V. Salker, Investigation of the effect of fractional In3+ ion substitution on the structural, magnetic, and dielectric properties of Co–Cu ferrite. J. Phys. Chem. Solids 133, 151–162 (2019)

    Article  CAS  Google Scholar 

  32. A.V. Humbe et al., Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni–Zn spinel ferrite synthesized by nitrate–citrate route. J. Alloys Compds 691, 343–354 (2017)

    Article  CAS  Google Scholar 

  33. L.-Z. Li et al., Structural and magnetic properties of strontium substituted NiZn ferrite nanopowders. Ceram. Int. 42(11), 13238–13241 (2016)

    Article  CAS  Google Scholar 

  34. M.P. Reddy et al., Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C 30(8), 1094–1099 (2010)

    Article  CAS  Google Scholar 

  35. S.L. Reddy et al., Synthesis and spectroscopic characterization of copper zinc aluminum nanoferrite particles. Spectrochim. Acta A 127, 361–369 (2014)

    Article  Google Scholar 

  36. R. Sharma et al., Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compds 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  37. M.D. Hossain et al., Frequency and temperature dependent magnetic properties with structural Rietveld refinement of Co0.25Zn0.75YxFe2−xO4 ferrites. J. Magn. Magn. Mater. 493, 165696 (2020)

    Article  CAS  Google Scholar 

  38. G. Lal et al., Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles. Ceram. Int. 45(5), 5837–5847 (2019)

    Article  CAS  Google Scholar 

  39. K. Sun et al., Rietveld refinement, microstructure and ferromagnetic resonance linewidth of iron-deficiency NiCuZn ferrites. J. Alloys Compds 681, 139–145 (2016)

    Article  CAS  Google Scholar 

  40. A.V. Humbe et al., Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44(5), 5466–5472 (2018)

    Article  CAS  Google Scholar 

  41. M.N. Akhtar et al., Impact of Co doping on physical, structural, microstructural and magnetic features of MgZn nanoferrites for high frequency applications. Ceram. Int. 46(2), 1750–1759 (2020)

    Article  CAS  Google Scholar 

  42. M.D. Rahaman et al., Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5−xSrxFe2O4 ferrites. J. Magn. Magn. Mater. 451, 391–406 (2018)

    Article  CAS  Google Scholar 

  43. S. Mansour, M. Abdo, F. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu–Zn nanoferrites. J. Magn. Magn. Mater. 465, 176–185 (2018)

    Article  CAS  Google Scholar 

  44. M. Sharif et al., Impact of Co and Mn substitution on structural and dielectric properties of lithium soft ferrites. Physica B 567, 45–50 (2019)

    Article  CAS  Google Scholar 

  45. M. Sundararajan et al., Microwave combustion synthesis of Co1−xZnxFe2O4 (0 ≤ x≤ 0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta A 140, 421–430 (2015)

    Article  CAS  Google Scholar 

  46. M. Arshad et al., Structural and magnetic properties variation of manganese ferrites via Co–Ni substitution. J. Magn. Magn. Mater. 474, 98–103 (2019)

    Article  CAS  Google Scholar 

  47. R.S. Yadav et al., Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x= 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  Google Scholar 

  48. S. Debnath et al., X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths. J. Phys. Chem. Solids 134, 105–114 (2019)

    Article  CAS  Google Scholar 

  49. A. Gholizadeh, A comparative study of the physical properties of Cu–Zn ferrites annealed under different atmospheres and temperatures: magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. J. Magn. Magn. Mater. 452, 389–397 (2018)

    Article  CAS  Google Scholar 

  50. M. Deepty et al., XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn-substituted Zn–ferrite nanoparticles. Ceram. Int. 45(6), 8037–8044 (2019)

    Article  CAS  Google Scholar 

  51. T.P. Poudel et al., The effect of gadolinium substitution in inverse spinel nickel ferrite: structural, magnetic, and Mössbauer study. J. Alloys Compds 802, 609–619 (2019)

    Article  CAS  Google Scholar 

  52. K. Jalaiah et al., Co-dopant affect on the structural, electrical and magnetic properties of zirconium and copper co-substituted Ni0.75Zn0.25Fe2O4 spinel ferrites synthesized by sol–gel method. Chin. J. Phys. 56(5), 2039–2051 (2018)

    Article  CAS  Google Scholar 

  53. A.C. Lima et al., The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Mater. Lett. 145, 56–58 (2015)

    Article  CAS  Google Scholar 

  54. M. Abdullah Dar et al., Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl. Nanosci. 4(6), 675–682 (2014)

    Article  CAS  Google Scholar 

  55. I. Maghsoudi et al., Synthesis and characterization of NiAlxFe2−xO4 magnetic spinel ferrites produced by conventional method. Powder Technol. 235, 110–114 (2013)

    Article  CAS  Google Scholar 

  56. S.E. Shirsath et al., Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16(6), 2347–2357 (2014)

    Article  CAS  Google Scholar 

  57. N.-N. Jiang et al., Influence of zinc concentration on structure, complex permittivity and permeability of Ni–Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016)

    Article  CAS  Google Scholar 

  58. M. Dilshad et al., Fabrication and characterization of Ni1+ xZrxFe2− 2xO4 nanoparticles for potential applications in high frequency devices. Ceram. Int. 42(14), 16359–16363 (2016)

    Article  CAS  Google Scholar 

  59. M. Ejaz et al., Influence of Yb3+ on the structural, dielectric and magnetic properties of Mg0.7Co0.3Fe2O4 nanocrystallites synthesized via co-precipitation route. J. Magn. Magn. Mater. 404, 257–264 (2016)

    Article  CAS  Google Scholar 

  60. M. Asif Iqbal et al., High frequency dielectric properties of Eu+3-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method. J. Alloys Compds 586, 404–410 (2014)

    Article  CAS  Google Scholar 

  61. P. Choudhary, D. Varshney, Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg–Zn spinel nanoferrites. Solid State Commun. 271, 89–96 (2018)

    Article  CAS  Google Scholar 

  62. M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH. J. Alloys Compds 509(2), 435–439 (2011)

    Article  CAS  Google Scholar 

  63. I. Gul, A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compds 465(1–2), 227–231 (2008)

    Article  CAS  Google Scholar 

  64. Z.A. Gilani et al., Structural and electromagnetic behavior evaluation of Nd-doped lithium–cobalt nanocrystals for recording media applications. J. Alloys Compds 639, 268–273 (2015)

    Article  CAS  Google Scholar 

  65. V. Manikandan et al., Structural, dielectric and enhanced soft magnetic properties of lithium (Li) substituted nickel ferrite (NiFe2O4) nanoparticles. J. Magn. Magn. Mater. 465, 634–639 (2018)

    Article  CAS  Google Scholar 

  66. A.S. Fawzi, A. Sheikh, V. Mathe, Structural, dielectric properties and AC conductivity of Ni(1–x)ZnxFe2O4 spinel ferrites. J. Alloys Compds 502(1), 231–237 (2010)

    Article  CAS  Google Scholar 

  67. M. Elkestawy, AC conductivity and dielectric properties of Zn1−xCuxCr0.8Fe12O4 spinel ferrites. J. Alloys Compds 492(1–2), 616–620 (2010)

    Article  CAS  Google Scholar 

  68. N. Hamdaoui et al., Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram. Int. 45(13), 16458–16465 (2019)

    Article  CAS  Google Scholar 

  69. E. AlArfaj et al., Effects of Co substitution on the microstructural, infrared, and electrical properties of Mg0.6−xCoxZn0.4Fe2O4 ferrites. J. Supercond. Nov. Magn. 31(12), 4107–4116 (2018)

    Article  CAS  Google Scholar 

  70. N. Vasoya et al., Electric modulus, scaling and modeling of dielectric properties for Mn2+–Si4+ co-substituted Mn–Zn ferrites. J. Electron. Mater. 45(2), 917–927 (2016)

    Article  CAS  Google Scholar 

  71. J. Joshi et al., Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017)

    Article  CAS  Google Scholar 

  72. Q. Khan et al., Structural features and dielectric behavior of Al substituted Cu0.7Ni0.3Fe2O4 ferrites. Mater. Chem. Phys. 273, 125028 (2021)

    Article  CAS  Google Scholar 

  73. M.P. Dojcinovic et al., Mixed Mg–Co spinel ferrites: structure, morphology, magnetic and photocatalytic properties. J. Alloys Compds 855, 157429 (2021)

    Article  CAS  Google Scholar 

  74. M. Junaid et al., Structural, spectral, dielectric and magnetic properties of indium substituted copper spinel ferrites synthesized via sol gel technique. Ceram. Int. 46(17), 27410–27418 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extends their appreciation to the Researchers Supporting Project Number (RSP-2021/394), King Saud University, Riyadh, Saudi Arabia. The authors extend their sincere appreciation to the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Junaid, Muhammad Azhar Khan or Thamraa Alshahrani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaid, M., Khan, M.A., Al-Muhimeed, T.I. et al. Structural, spectral, dielectric, and magnetic properties of indium substituted Cu0.5Zn0.5Fe2−xO4 magnetic oxides. J Mater Sci: Mater Electron 33, 27–41 (2022). https://doi.org/10.1007/s10854-021-07151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07151-3

Navigation