Skip to main content
Log in

Effect of MWCNTs/ZnO inorganic fillers on the electrical, mechanical and thermal properties of SiR-based composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rubber insulation materials were widely used in the fields of electrical and electronic engineering, especially, which have excellent nonlinear electrical conductivity and can be employed to homogenize the electric field distribution of cable accessories. To enable the rubber materials, such as silicon rubber (SiR), to possess excellent nonlinear electrical conductivity has been a hot issue. In this paper, MWCNTs/ZnO inorganic fillers were prepared by mixing a small amount of multi-wall carbon nanotubes (MWCNTs) with zinc oxide (ZnO) nanosheets, and MWCNTs/ZnO/SiR composites were prepared. The macroscopical properties results show that the nonlinear electrical conductivity characteristics can be induced by filling appropriate content of MWCNTs/ZnO fillers, and the threshold field strength corresponding to the nonlinear conductivity gradually decreases with the increase of MWCNTs filling content, which further decreases with the increase of measured temperature. The COMSOL simulation results also verify that MWCNTs/ZnO/SiR composite with nonlinear conductivity can effectively reduce the electric field strength at the stress cone of cable accessories. In addition, the thermal conductivity and tensile strength for MWCNTs/ZnO/SiR composite are also improved comparing to pristine SiR. This work demonstrates MWCNTs/ZnO/SiR composites possess outstanding overall properties and have good potential to be used in the cable accessory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Zha, Y.H. Zhu, W.K. Li, J.B. Bai, Z.M. Dang, Appl. Phys. Lett. 101, 6 (2012)

    Google Scholar 

  2. Y.D. Chen, K. Zhou, X.C. Ren, S.J. Chen, Z.R. Li, Polym. Compos. 41, 9 (2020)

    Google Scholar 

  3. G.C. Li, M.Y. Liu, C.C. Hao, Q.Q. Lei, Y.H. Wei, J. Mater. Sci-Mater. Electron. 30, 2 (2019)

    Article  Google Scholar 

  4. N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, G. Taylor, IEEE Access 4, 1810 (2016)

    Article  Google Scholar 

  5. Y. Xie, L. Yang, W. Li, Y.L. Liu, IOP conference series materials science and engineering. 587, 012012, (2019)

  6. A. Espin-Delgado, S.S. Letha, S. Ronnberg, M. Bollen, IEEE Open J. Ind. Appl. 1, 42 (2020)

    Article  Google Scholar 

  7. Q.G. Chi, M. Yang, C.H. Zhang, T.D. Zhang, Y. Feng, Q.G. Chen, IEEE Trans. Dielectr. Electr. Insul. 26, 4 (2019)

    Article  Google Scholar 

  8. D.X. He, F.S. Meng, H.S. Liu, Q.Q. Li, X.R. Wang, IEEE Trans. Dielectr. Electr. Insul. 26, 5 (2019)

    Google Scholar 

  9. Y.H. Wei, M.Y. Liu, W. Han, G.C. Li, C.C. Hao, Q.Q. Lei, Polymers 11, 7 (2019)

    Google Scholar 

  10. Q.G. Chi, S. Cui, T.D. Zhang, M. Yang, Q.G. Chen, IEEE Trans. Dielectr. Electr. Insul. 27, 2 (2020)

    Article  Google Scholar 

  11. Z.L. Li, R.J. Huang, B.X. Du, T. Han, IEEE T. Appl. Supercon. 30, 8 (2020)

    Google Scholar 

  12. N.Q. Shang, Q.G. Chen, Y.J. Qin, M.H. Chi, X.L. Wei, Adv. Mater. Res. 981, 814 (2014)

    Article  Google Scholar 

  13. Z.L. Li, B.X. Du, Z.R. Yang, C. Han, J.G. Han, Polymer Insulation Applied for HVDC Transmission (Springer, Singapore, 2021), pp. 215–242

    Book  Google Scholar 

  14. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul 26, 3 (2019)

    Article  Google Scholar 

  15. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul. 26, 3 (2019)

    Article  Google Scholar 

  16. L. Gao, X. Yang, J. Hu, J.L. He, Mater. Lett. 171, 1 (2016)

    Article  CAS  Google Scholar 

  17. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul. 24, 3 (2017)

    Article  Google Scholar 

  18. X. Yang, J.L. He, J. Hu, J. Appl. Polym. Sci. 132, 40 (2015)

    Google Scholar 

  19. D. Ma, R.W. Siegel, J.I. Hong, J. Mater. Res. 19, 3 (2004)

    Article  Google Scholar 

  20. S. Singha, M.J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008)

    Article  CAS  Google Scholar 

  21. Q.G. Chi, Y.Y. Hao, T.D. Zhang, C.H. Zhang, Q.G. Chen, J. Mater. Sci-Mater. Med. 29, 23 (2018)

    Article  Google Scholar 

  22. Z.T. Meng, T.D. Zhang, Q.G. Chi, C.H. Zhang, C. Tang, H. Li, Q.Q. Lei, J. Mater. Sci-Mater. Electron. 32, 13 (2021)

    Article  Google Scholar 

  23. S.Y. Pak, H.M. Kim, S.Y. Kim, J.R. Youn, Carbon 50, 13 (2012)

    Article  Google Scholar 

  24. H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu, Y. Huang, L.B. Du, B. Chen, Prog. Polym. Sci. 59, 41 (2016)

    Article  CAS  Google Scholar 

  25. O. Guler, O. Basgoz, S.H. Guler, C.A. Canbay, S. Acikgoz, M. Boyrazli, J. Mater. Sci-Mater. Electr. 32, 13 (2021)

    Article  Google Scholar 

  26. O. Guler, Sci. Eng. Compos. Mater. 23, 4 (2016)

    Article  Google Scholar 

  27. O. Guler, Int. J. Mater. Res. 106, 6 (2015)

    Article  Google Scholar 

  28. E. Mårtensson, U. Gäfvert, U. Lindefelt, J. Appl. Phys. 90, 6 (2001)

    Google Scholar 

  29. C. Onneby, E. Martensson, U. Gafvert, A. Gustafsson , L. Palmqvist, “Electrical properties of field grading materials influenced by the silicon carbide grain size,” ICSD’01. Proceedings of the 20001 IEEE 7th International Conference on Solid Dielectrics (Cat. No.01CH37117), 2001, pp. 43–45. https://doi.org/10.1109/ICSD.2001.955507

  30. Y.S. Yan, A. Iqbal, C. Wu, Y.C. Wang, G. Li, R.R. Qi, J. Appl. Polym. Sci. 137, 7 (2020)

    Google Scholar 

  31. R.M. Hill, L.A. Dissado, J. Phys. C Solid State Phys. 15, 5 (1982)

    Article  Google Scholar 

  32. M. Fu, L.A. Dissado, G. Chen, J.C. Fothergill, IEEE Trans. Dielectr. Electr. Insul. 15, 3 (2008)

    Article  Google Scholar 

  33. H.M. Kim, M.S. Choi, J. Joo, S.J. Cho, H.S. Yoon, Phys. Rev. B 74, 5 (2006)

    Google Scholar 

  34. M. Ieda, M. Nagao, IEEE Trans. Dielectr. Electr. Insul. 1, 5 (1994)

    Article  Google Scholar 

  35. C.W. Nan, Z. Shi, Y. Lin, Chem. Phys. Lett. 375, 666 (2003)

    Article  CAS  Google Scholar 

  36. Y. Heng, Y. Li, X.F. Yao, Z. Zheng, D.N. Fang, Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108474

    Article  Google Scholar 

  37. L. Qiao, K.L. Zhu, H.S. Tan, X. Yan, L.H. Zheng, S.H. Dong, Mater. Res. Express 8, 4 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key project of Heilongjiang Province Natural Science Foundation (No. ZD2020E009) and Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices under Grant KFJJ201904.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiandong Zhang or Chao Tang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Q., Meng, Z., Zhang, T. et al. Effect of MWCNTs/ZnO inorganic fillers on the electrical, mechanical and thermal properties of SiR-based composites. J Mater Sci: Mater Electron 32, 27676–27687 (2021). https://doi.org/10.1007/s10854-021-07149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07149-x

Navigation