Skip to main content
Log in

Study on electrical properties of donor ZnO nanoparticles/EPDM composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rubber-based composites with outstanding nonlinear electrical conductivity can improve the electric field distribution of cable accessory, which have been widely used in cable accessory and high-voltage engineering. In this paper, a sol–gel method was used to prepare the iron ion doped ZnO nanoparticle inorganic filler, and then it was added to the EPDM rubber to prepare the composite. The microstructure and electrical properties were systematically studied. The results show that with the increase of inorganic fillers content, the nonlinear conductivity becomes much more distinguished, accompanying with the increased conductance nonlinear coefficient and the decreased breakdown field strength. The conductance nonlinear coefficient and breakdown field strength of the donor ZnO nanoparticles/EPDM rubber composites have been improved to a certain degree than that of the ZnO nanoparticles/EPDM composites. In addition, as the temperature increases, the conductance nonlinear coefficient and breakdown field strength decrease simultaneously. Finally, the simulation results also verify that the donor ZnO/EPDM composite with nonlinear electrical conductivity can uniform the electric field distribution of cable accessory, which provides an effective way to protect the safe operation of power transmission system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Wu, M. Arab, J. Ronzello, Y. Cao, IEEE Trans. Dielectr. Electr. Insul. 28, 3 (2021)

    Article  CAS  Google Scholar 

  2. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul. 25, 1080 (2018)

    Article  CAS  Google Scholar 

  3. D. Fabiani, G.C. Montanari, C. Laurent et al., IEEE Electr. Insul. Mag. 23, 11 (2007)

    Article  Google Scholar 

  4. L. Donzel, F. Greuter, T. Christen, IEEE Electr. Insul. Mag. 27, 18 (2011)

    Article  Google Scholar 

  5. J. Li, B.X. Du, X.X. Kong et al., IEEE Trans. Dielectr. Electr. Insul. 24, 1566 (2017)

    Article  CAS  Google Scholar 

  6. Z.Y. Li, W.F. Sun, H. Zhao, Polymers 11, 2083 (2019)

    Article  CAS  Google Scholar 

  7. C. Liu, Z. Chang, X. Zheng, Int. Conf. Prop. Appl. Dielectr. Mater. (ICPADM) 2018, 275 (2018)

    Google Scholar 

  8. T. Yao, K. Chen, T. Shao et al., IEEE Trans. Dielectr. Electr. Insul. 27, 528 (2020)

    Article  CAS  Google Scholar 

  9. J. Ren, Q. Li, L. Yan et al., Mater. Des. 191, 108663 (2020)

    Article  CAS  Google Scholar 

  10. D. Fabiani, G.C. Montanari, C. Laurent et al., IEEE Electr. Insul. Mag. 24, 5 (2008)

    Article  Google Scholar 

  11. A.M. Pourrahimi, T.A. Hoang, D. Liu et al., Adv. Mater. 28, 8651 (2016)

    Article  CAS  Google Scholar 

  12. X. Yang, J. Hu, J. He, Appl. Phys. Lett. 110, 485 (2017)

    Google Scholar 

  13. X. Wang et al., IEEE Conf. Electr. Insul. Dielectr. Phenom. 2006, 421 (2006)

    Google Scholar 

  14. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux et al., Process. Appl. Ceram. 10, 125 (2016)

    Article  CAS  Google Scholar 

  15. H. Liu, J. Yang, Y. Zhang et al., J. Phys.: Condens. Matter 21, 145803 (2009)

    Google Scholar 

  16. X. Qi, Z. Zheng, S. Boggs, IEEE Electr. Insul. Mag. 20, 27 (2004)

    Article  Google Scholar 

  17. C. Liu, Y. Zheng, B. Zhang et al., IEEE Access 7, 50536 (2019)

    Article  Google Scholar 

  18. Z. Li, R. Huang, B. Du, T. Han, IEEE Trans. Appl. Supercond. 30, 1 (2020)

    Google Scholar 

  19. S.M. Lebedev, O.S. Gefle, Y.P. Pokholkov, IEEE Trans. Dielectr. Electr. Insul. 12, 537 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51807042), Natural Science Foundation of Heilongjiang Province (TD2019E002). Fundamental Research Foundation for Universities of Heilongjiang Province (No. 2019-KYYWF-0208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Q., Jiang, L., Zhang, T. et al. Study on electrical properties of donor ZnO nanoparticles/EPDM composites. J Mater Sci: Mater Electron 32, 26894–26904 (2021). https://doi.org/10.1007/s10854-021-07064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07064-1

Navigation