Skip to main content
Log in

Synthesis and luminescent properties of ZrO2 and Dy3+-activated ZrO2 powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZrO2 and ZrO2:Dy3+ (0.25, 0.5, 1, 1.5, 2, 2.5, and 3 mol%) powders are synthesized via solution combustion method. Structural, luminescent, and optical characterization of the synthesized series is performed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, and ultraviolet–visible spectroscopy, respectively. XRD pattern reveals that ZrO2:Dy3+ (1 mol%) has a single-phase tetragonal crystal structure with space group P42/nmc. FTIR spectrum reveals the presence of Zr–O vibration mode of the t-ZrO2 phase. PL result of ZrO2 reveals that a broad band is obtained in the blue region when excited under 240 nm and for ZrO2:Dy3+, three characteristic emission peaks are obtained at 484, 585, and 680 nm that are ascribed to the electronic transition of Dy3+ ion. The optimal molar concentration is obtained at 1 mol% and exchange interaction is the main cause for the concentration quenching process in ZrO2:Dy3+ samples. The optical bandgap of ZrO2 and ZrO2:Dy3+ is found to be 3.27 and 3.50 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Ahemen, F.B. Dejene, Luminescence and energy transfer mechanism in Eu3+/Tb3+co-doped ZrO2 nanocrystal rods. J. Nanopart Res. 19, 1–15 (2017)

    Article  CAS  Google Scholar 

  2. Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59–117 (2016)

    Article  CAS  Google Scholar 

  3. H. Terraschke, C. Wickleder, UV, blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors. Chem. Rev. 115, 11352–11378 (2015)

    Article  CAS  Google Scholar 

  4. Z. Xia, A. Meijerink, Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275–299 (2017)

    Article  CAS  Google Scholar 

  5. V. Srivastava, D. Gusain, Y.C. Sharma, Synthesis, characterization and application of zinc oxide nanoparticles. Ceram. Int. 39, 9803–9808 (2013)

    Article  CAS  Google Scholar 

  6. S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Férid, Synthesis and luminescence characteristics of Dy3+ doped KLa(PO3)4. J. Lumin. 166, 82–87 (2015)

    Article  CAS  Google Scholar 

  7. R. Prakash, S. Kumar, R. Mahajan, P. Khajuria, V. Kumar, R.J. Choudhary, D.M. Phase, Spectral properties of Dy3+ doped ZnAl2O4 phosphor. AIP Conf. Proc. 1953, 0300401–0300404 (2018)

    Google Scholar 

  8. S. Samantaray, B.G. Mishra, Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octa hydro quinazolinones. J. Mol. Catal. A 339, 92–98 (2011)

    Article  CAS  Google Scholar 

  9. H.S. Lokesha, K.R. Nagabhushana, F. Singh, Enhancement in luminescence properties of ZrO2:Dy3+ under 100 MeV swift Ni7+ ion irradiation. RSC Adv. 6, 55240–55247 (2016)

    Article  CAS  Google Scholar 

  10. I.J. Berlin, L.V. Maneeshya, J.K. Thomas, P.V. Thomas, K. Joy, Enhancement of photoluminescence emission intensity of zirconia thin films via aluminum doping for the application of solid state lighting in light emitting diode. J. Lumin. 132, 3077–3081 (2012)

    Article  CAS  Google Scholar 

  11. V.S. Anitha, S.S. Lekshmy, K. Joy, Effect of annealing temperature on optical and electrical properties of ZrO2–SnO2 nanocomposite thin films. J. Mater. Sci. 24, 4340–4345 (2013)

    CAS  Google Scholar 

  12. H. Hobbs, S. Briddon, Ed. Lester, The synthesis and fluorescent properties of nanoparticulate ZrO2 doped with Eu using continuous hydrothermal synthesis. Green Chem. 11, 484–491 (2009)

  13. C. Tiseanu, B. Cojocaru, V.I. Parvulescu, M.S. Dominguez, P.A. Primus, M. Boutonnet, Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys. 14, 12970–12981 (2012)

    Article  CAS  Google Scholar 

  14. S.A. Naidu, S. Boudin, U.V. Varadaraju, B. Raveau, Host-sensitized emission of LiInW2O8 wolframites: from red-Eu3+ to white-Dy3+ phosphors. J. Solid State Chem. 184, 2566–2570 (2011)

    Article  Google Scholar 

  15. N. Salah, S.S. Habib, Z.H. Khan, F. Djouider, Thermoluminescence and photoluminescence of ZrO2 nanoparticles. Radiat. Phys. Chem. 80, 923–928 (2011)

    Article  CAS  Google Scholar 

  16. C. Durana, K. Sato, Y. Hotta, H. Göçmez, K. Watari, Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders. Ceram. Int. 41, 5588–5593 (2015)

    Article  Google Scholar 

  17. R.K. Tamrakar, D.P. Bisen, K. Upadhyay, Photoluminescence behavior of ZrO2:Eu3+ with variable concentration of Eu3+ doped phosphor. J. Radiat. Res. Appl. Sci. 8, 11–16 (2015)

    Article  CAS  Google Scholar 

  18. B. D. Cullity, Element of X-ray diffraction, 2nd ed., (Addison-Wesley, New York, 1956), pp.107–113.

  19. J. Chandradass, M. Balasubramanian, K.H. Kim, Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2–SiO2 mixed oxide. J. Exp. Nanosci. 6, 38–48 (2010)

    Article  Google Scholar 

  20. O. S. Dahham, R. Hamzah, N. Z. Noriman, A. M. Alakrach, S. Z. Syed Idrus, Z. Shayfull, T. Adam, The influences of zirconium dioxide on ENR-25/ZrO2 composites: FTIR and TGA Analysis. J. Phys. 1019, 012055 (2018).

  21. N.C.S. Selvam, A. Manikandan, L.J. Kennedy, J.J. Vijaya, Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties. J. Colloid Interface Sci. 389, 91–98 (2013)

    Article  CAS  Google Scholar 

  22. S. Sharma, N. Brahme, D.P. Bisen, P. Dewangan, Cool white light emission from Dy3+ activated alkaline alumino silicate phosphors. Opt. Express 26, 29495–29508 (2018)

    Article  CAS  Google Scholar 

  23. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, S.W. Liu, D. Xu, D.R. Yuan, Effect of Dy3+ doping and calcination on the luminescence of ZrO2 nanoparticles. Chem. Phys. Lett. 380, 185–189 (2003)

    Article  CAS  Google Scholar 

  24. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  25. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–851 (1953)

    Article  CAS  Google Scholar 

  26. A.K. Bedyal, V. Kumar, R. Prakash, O.M. Ntwaeaborwa, H.C. Swart, A near-UV-converted LiMgBO3:Dy3+ nanophosphor: surface and spectral investigations. Appl. Surf. Sci. 329, 40–46 (2015)

    Article  CAS  Google Scholar 

  27. B. Han, P. Li, J. Zhang, J. Zhang, Y. Xue, H. Shi, The effect of Li+ ions on the luminescent properties of a single-phase white light-emitting phosphor α-Sr2P2O7:Dy3+. Dalton Trans. 44, 7854–7861 (2015)

    Article  CAS  Google Scholar 

  28. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992)

    Article  Google Scholar 

  29. V. Kumar, M. Manhas, A.K. Bedyal, H.C. Swart, Synthesis, spectral and surface investigation of novel CaMgB2O5:Dy3+ nanophosphor for UV based white LEDs. Mater. Res. Bull. 91, 140–147 (2017)

    Article  CAS  Google Scholar 

  30. A. E. Morales, E. S. Mora, U. Pa, Use of diffuse reflectance spectroscopy for optical characterization of unsupported nanostructures. Rev. Mex. Fis.S 53, 18–22 (2007).

  31. M. Grundmann, The Physics of Semiconductors (Springer, Berlin, 2006)

    Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr. Mukul Gupta, Scientist, UGC-DAE CSR, Indore for providing the XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajuria, P., Mahajan, R. & Prakash, R. Synthesis and luminescent properties of ZrO2 and Dy3+-activated ZrO2 powders. J Mater Sci: Mater Electron 32, 27441–27448 (2021). https://doi.org/10.1007/s10854-021-07120-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07120-w

Navigation