We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

White and yellow light emission from ZrO2:Dy3+ nanocrystals synthesized by a facile chemical technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

White and yellow light were obtained from ZrO2:Dy3+ nanocrystals which were synthesized by the solvent evaporation technique. The crystalline structure was studied by X-ray diffraction, resulting in a tetragonal and monoclinic mixture phases of ZrO2 when the powders were annealed at 600 °C and the zirconia monoclinic phase when they were thermal treated at 1000 °C. By means of atomic force microscopy images was observed that the synthesized powders are constituted by nanocrystals about 20 nm for the samples annealed at 600 °C, whereas samples annealed at 1000 °C were constituted by crystals about 135 nm, these features were confirmed by TEM images. Luminescence properties were analyzed by means of photo and cathodoluminescence; exhibiting emissions in the white light region of the chromatic diagram. In the case of photoluminescence white-warm color (x = 0.35, y = 0.37) was observed, which is close to pure white color; while for cathodoluminescence the emission was yellowish with coordinates (x = 0.39, y = 0.39) in the chromatic diagram. PL decay time measurements were carried out; a lifetime of 0.66 ms was found. In addition, the PL quantum efficiency was measured; the obtained value was as high as 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Lange, V. Kiisk, V. Reedo, M. Kirm, J. Aarik, I. Sildos, Opt. Mater. 28, 1238–1242 (2006)

    Article  Google Scholar 

  2. Z. Xie, Z. Yin, Y. Wu, C. Liu, X. Hao, Q. Du, X. Xu, Nat. Sci. Rep. 7, 12146 (2017)

    Article  Google Scholar 

  3. J. Cho, J.H. Park, J.K. Kim, E.F. Schubert, Laser Photonics Rev. 11(2), 1600147 (2017)

    Article  Google Scholar 

  4. M.M. Kimani, J.W. Kolis, J. Lumin. 145, 492–497 (2014)

    Article  Google Scholar 

  5. S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Férid, J. Lumin. 166, 82–87 (2015)

    Article  Google Scholar 

  6. Y.C. Ratnakaram, D.T. Naidu, A. Vijayakumar, J.L. Rao, Opt. Mater. 27, 409–417 (2004)

    Article  Google Scholar 

  7. S. Tanabe, J. Kang, T. Hanada, N. Soga, J. Non-Cryst. Solids 239, 170–175 (1998)

    Article  Google Scholar 

  8. P. Babu, C.K. Jayasankar, Opt. Mater. 15, 65–79 (2000)

    Article  Google Scholar 

  9. H.W. Zhang, X.Y. Fu, S.Y. Niu, C.G. Sun, Q. Xim, Solid State Commun. 132, 527 (2004)

    Article  Google Scholar 

  10. D. Van der Voort, G. Blasse, Chem. Mater. 3, 1041–1045 (1991)

    Article  Google Scholar 

  11. K. Hanaoka, K. Kikichi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 126, 12470–12476 (2004)

    Article  Google Scholar 

  12. Z. Hong, W.L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, Synth. Met. 111, 43 (2000)

    Article  Google Scholar 

  13. I.T. Weber, A.P. Maciel, P.N. Lisboa-Filho, E. Longo, E.R. Leite, Nano Lett. 2, 969–973 (2002)

    Article  Google Scholar 

  14. H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, J. Lumin. 82, 25–32 (1999)

    Article  Google Scholar 

  15. C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, M. Muñoz, J. Sol-Gel. Sci. Technol. 8, 999–1005 (1997)

    Google Scholar 

  16. A. Gendaken, R. Reisfeld, E. Sominsky, O. Palchik, Yu Kiltypin, G. Pancer, M. Gaft, H. Minti, J. Phys. Chem. B 204, 7075 (2000)

    Google Scholar 

  17. H.W. Zhang, X.Y. Fu, S.Y. Niu, Q. Xin, Mater. Chem. Phys. 91, 361–364 (2005)

    Article  Google Scholar 

  18. J.C. Pivin, N.V. Gaponenco, I. Molchan, R. Kudrawiec, J. Misiewics, J. Alloys Compd. 341, 272–274 (2002)

    Article  Google Scholar 

  19. M. Garcia-Hipolito, O. Alvarez-Fregoso, E. Martínez, C. Falcony, M.A. Aguilar-Frutis, Opt. Mater. 20, 113–118 (2002)

    Article  Google Scholar 

  20. A. Baéz-Rodríguez, O. Alvarez-Fragoso, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, Ceram. Int. 41, 7197–7206 (2015)

    Article  Google Scholar 

  21. R.C. Martínez-Olmos, J. Guzmán-Mendoza, A. Báez-Rodríguez, O. Álvarez-Fragoso, M. García-Hipólito, C. Falcony, Opt. Mater. 46, 168–174 (2015)

    Article  Google Scholar 

  22. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416–419 (1994)

    Article  Google Scholar 

  23. P. Haritha, C.S.D. Viswanath, K. Linganna, P. Babu, C.K. Jayasankar, V. Lavín, V. Venkatramu, J. Lumin. 179, 533–538 (2016)

    Article  Google Scholar 

  24. Y. Gao, Y. Masuda, H. Ohta, K. Koumoto, Chem. Mater. 16, 2615–2622 (2004)

    Article  Google Scholar 

  25. M.A. Waghmare, K.S. Pawar, H.M. Pathan, A.U. Ubale, Mater. Sci. Semicond. Process. 72, 122–127 (2017)

    Article  Google Scholar 

  26. J. Jalali, M. Mozammel, J. Mater. Sci.: Mater. Electron. 28, 5336–5343 (2017)

    Google Scholar 

  27. J. Jalali, M. Mozammel, M. OjaghiIlkhchi, J. Mater. Sci.: Mater. Electron. 28, 16776–16787 (2017)

    Google Scholar 

  28. P. Haritha, I.R. Martín, C.S.D. Viswanath, N. Vijaya, K.V. Krishnaiah, Opt. Mater. 70, 16–24 (2017)

    Article  Google Scholar 

  29. X. Fua, S. Niu, H. Zhang, Q. Xin, Mater. Sci. Eng. B 129, 14–17 (2006)

    Article  Google Scholar 

  30. Q. Du, G. Zhou, J. Zhou, X. Jia, H. Zhou, J. Alloys Compd. 552, 152–156 (2013)

    Article  Google Scholar 

  31. C.-H. Liang, L.-G. Teohb, K.T. Liu, Y.-S. Chang, J. Alloys Compd. 517, 9–13 (2012)

    Article  Google Scholar 

  32. Y. Shi, Y. Wang, Z. Yang, J. Alloys Compd. 509, 3128–3131 (2011)

    Article  Google Scholar 

  33. O. Lyuji, Cathodoluminescence Theory and Applications (Kodansha Ltd., Tokio, 1990), pp. 3–36

    Google Scholar 

  34. G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, H. You, Opt. Mater. 31, 1032–1037 (2009)

    Article  Google Scholar 

  35. G. Phaomei, W. Singh, R.S. Ningthoujam, J. Lumin. 131, 1164–1171 (2011)

    Article  Google Scholar 

  36. I.A. Rayappan, K. Marimuthu, S.S. Babu, M. Sivaraman, J. Lumin. 130, 2407–2412 (2010)

    Article  Google Scholar 

  37. T. Li, P.L. Li, Z.J. Wang, S.C. Xu, Q.Y. Bai, Z.P. Yang, Dalton Trans. 44, 16840–16846 (2015)

    Article  Google Scholar 

  38. H. Deng, N. Xue, Z. Hei, M. He, T. Wang, N. Xie, R. Yu, Opt. Mater. Express 5, 490–496 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Adriana Tejeda for the XRD measurements and to Daniel de Jesús Araujo Perez for their for the XRD analysis, to Omar Novelo for the SEM micrographs, to Josué Romero for TEM images, Carlos Flores for the AFM images and to Marcela Guerrero, Zacarías Rivera, Raúl Reyes and Alberto López for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Báez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Báez-Rodríguez, A., Albarrán-Arreguín, D., García-Velasco, A.C. et al. White and yellow light emission from ZrO2:Dy3+ nanocrystals synthesized by a facile chemical technique. J Mater Sci: Mater Electron 29, 15502–15511 (2018). https://doi.org/10.1007/s10854-018-9105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9105-1

Navigation