Skip to main content
Log in

Luminescence and energy transfer mechanism in Eu3+/Tb3+-co-doped ZrO2 nanocrystal rods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez E, Zayas ME, Alvarado-rivera J, Félix-domínguez F (2014) New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass. J Lumin 153:198–202. doi:10.1016/j.jlumin.2014.03.031

    Article  Google Scholar 

  • Back M, Boffelli M, Massari A, Marin R, Enrichi F, Riello P (2013) Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. J Nanopart Res 15(7). doi:10.1007/s11051-013-1753-8

  • Back M, Marin R, Franceschin M, Sfar Hancha N, Enrichi F, Trave E, Polizzi S (2016) Energy transfer in color-tunable water-dispersible Tb–Eu codoped CaF2 nanocrystals. J Mater Chem C 4(9):1906–1913. doi:10.1039/C5TC03355A

    Article  Google Scholar 

  • Cai WEI, Fu C, Gao J, Chen X, Zhang Q (2016) Microstructure and dielectric properties of barium zirconate titanate ceramics by two methods. Integr Ferroelectr 113(1):83–94. doi:10.1080/10584581003785393

    Article  Google Scholar 

  • Caldiño U, Speghini A, Berneschi S, Bettinelli M, Brenci M, Pasquini E (2014) Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium aluminosilicate glasses. J Lumin 147:336–340. doi:10.1016/j.jlumin.2013.11.061

    Article  Google Scholar 

  • Chen J, Liu Y, Mei L, Wang Z, Fang M, Huang Z (2015a) Emission red shift and energy transfer behavior of color-tunable KMg4(PO4)3: Eu2+, Mn2+ phosphors. J Mater Chem C 3:5516–5523. doi:10.1039/C5TC00636H

    Article  Google Scholar 

  • Chen D, Wang Z, Zhou Y, Huang P, Ji Z (2015b) Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: structural characterization, tunable luminescence and temperature sensing behavior. J Alloys Compd 646:339–344. doi:10.1016/j.jallcom.2015.06.030

    Article  Google Scholar 

  • Daniel DJ, Annalakshmi O, Madhusoodanan U, Ramasamy P (2014) Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+, Ce3+). J Rare Earth 32(6):496–500. doi:10.1016/S1002-0721(14)60098-3

    Article  Google Scholar 

  • Fernández-Carrión A, Ocaña M, García-Sevillano J, Cantelar E, Becerro AI (2014) New single-phase, white light-emitting phosphors based on δ-Gd2Si2O7 for solid state lighting. J Phys Chem C 118:18035–18043. doi:10.1021/jp505524g

    Article  Google Scholar 

  • Fodor M, Hegedüs A, Stefanovits-Bányai É (2005) Zirconium induced physiological alterations in wheat seedlings. Biol Plantarum 49(4):633–636. doi:10.1007/s10535-005-0065-y

    Article  Google Scholar 

  • Gao D, Zheng H, Zhang X, Gao W (2011) Luminescence enhancement and quenching by codopant ions in lanthanide doped fluoride nanocrystals. Nanotechnology 22(2011):175702. doi:10.1088/0957-4484/22/17/175702

    Article  Google Scholar 

  • Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243. doi:10.1021/j100888a024

    Article  Google Scholar 

  • Ghosh M, Karmakar D, Basu S, Jha SN, Bhattacharyya D, Gadkari SC, Gupta SK (2014) Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures. J Phys Chem Solids 75(4):543–549. doi:10.1016/j.jpcs.2013.11.007

    Article  Google Scholar 

  • Guan H, Sheng Y, Xu C, Dai Y, Xie X, Zou H (2016) Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy3+ ,Tb3+ ,Eu3+ phosphors. Phys Chem Chem Phys 18(29):19807–19819. doi:10.1039/C6CP03989H

    Article  Google Scholar 

  • Gupta SK, Ghosh PS, Yadav AK, Pathak N, Arya A, Jha SN, Bhattacharyya D, Kadam RM (2016) Luminescence properties of SrZrO3/Tb3+ perovskite: host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg Chem 55:1728–1740. doi:10.1021/acs.inorgchem.5b02639

    Article  Google Scholar 

  • Kaur J, Parganiha Y, Dubey V, Singh D, Chandrakar D (2014) Synthesis, characterization and luminescence behavior of ZrO2: Eu3+, Dy3+ with variable concentration of Eu and Dy doped phosphor. Superlattices Microst. 73:38–53. doi:10.1016/j.spmi.2014.05.009

    Article  Google Scholar 

  • Lee SY, Bang S, Kim S, Jo SY, Kim B-C, Hwang Y, Noh I (2015) Synthesis and in vitro characterizations of porous carboxymethyl cellulose-poly(ethylene oxide) hydrogel film. Biomater Res 19:12. doi:10.1186/s40824-015-0033-3

    Article  Google Scholar 

  • Li T, Li P, Wang Z, Xu S, Bai Q, Yang Z (2015) Structure, luminescence properties and energy transfer of Tb3+–Eu3+ codoped LiBaB9O15 phosphors. Dalton Trans 44:16840–16846. doi:10.1039/c5dt01849h

    Article  Google Scholar 

  • Lin H-Y, Chu S-Y (2012) Down-shifting and up-conversion spectroscopic properties of (Ca,Mg)3(VO4) 2:Yb3+ ,Eu3+ phosphors. J Am Ceram Soc 95(11):3538–3546. doi:10.1111/j.1551-2916.2012.05322.x

    Article  Google Scholar 

  • Liu L, Li C, Chen Y, Zhang X, Li L, Wang Y (2012) Phase transformation of ZrO2 nanocrystals induced by Li+. Mater Lett 79:75–77. doi:10.1016/j.matlet.2012.03.112

    Article  Google Scholar 

  • Luo S, Fan J, Liu W, Zhang M, Song Z, Lin C, Wu X, Chu PK (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17:1695–1699. doi:10.1088/0957-4484/17/6/025

    Article  Google Scholar 

  • Manoharan D, Loganathan A, Kurapati V, Nesamony VJ (2015) Unique sharp photoluminescence of size-controlled sonochemically synthesized zirconia nanoparticles. Ultrason Sonochem 23:174–184

    Article  Google Scholar 

  • Meetei SD, Singh SD (2014) Hydrothermal synthesis and white light emission of cubic ZrO2: Eu3+ nanocrystals. J Alloys Compd 587:143–147. doi:10.1016/j.jallcom.2013.10.159

    Article  Google Scholar 

  • Mishra L, Sharma A, Vishwakarma AK, Jha K, Jayasimhadri M, Ratnam BV, Jang K, Rao AS, Sinha RK (2016) White light emission and color tunability of dysprosium doped barium silicate glasses. J Lumin 169:121–127. doi:10.1016/j.jlumin.2015.08.063

    Article  Google Scholar 

  • Muñoz Tabares JA, Anglada MJ (2010) Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy. J Am Ceram Soc 93(6):1790–1795. doi:10.1111/j.1551-2916.2010.03635.x

    Google Scholar 

  • Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Wang J, Ni J (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6):5738–5745

    Article  Google Scholar 

  • Parganiha Y, Kaur J, Dubey V, Shrivastava R, Dhoble SJ (2015) Superlattices and microstructures synthesis and luminescence study of BaZrO3: Eu3+ phosphor. Superlattices Microst 88:262–270. doi:10.1016/j.spmi.2015.09.016

    Article  Google Scholar 

  • Pires AM, Davolos MR (2001) Barium and zinc orthosilicate. Chem Mater 42:21–27

    Article  Google Scholar 

  • Pisarska J, Kos A, So M, Lidia Ż, Pisarski WA (2014) Energy transfer from Tb3+ to Eu3+ in lead borate glass. J Non-Cryst Solids 388:1–5. doi:10.1016/j.jnoncrysol.2014.01.019

    Article  Google Scholar 

  • Pisarski WA, Pisarska J, Zur L, Jayasankar CK (2014) Excitation and luminescence of rare earth-doped lead phosphate glasses. Appl Phys B Lasers Opt:837–845. doi:10.1007/s00340-014-5770-9

  • Pradhan S, Swarnima K, Mishra BG (2016) Ba/ZrO2 nanoparticles as efficient heterogeneous base catalyst for the synthesis of β-nitro alcohols and 2-amino 2-chromenes. J Chem Sci 128(7):1119–1130. doi:10.1007/s12039-016-1104-2

    Article  Google Scholar 

  • Puust L, Kiisk V, Utt K, Sildos I (2014) Afterglow and thermoluminescence of ZrO2 nanopowders. Cent Eur J Phys 12(6):415–420. doi:10.2478/s11534-014-0456-9

    Google Scholar 

  • Ramos-Guerraa AI, Guzmán-Mendozaa J, García-Hipólitob M, Alvarez-Fregosob O, Falcony C (2015) Multicolored photoluminescence and structural properties of zirconium oxide films co-doped with Tb3+ and Eu3+ ions. Ceram Int 41:11279–11286. doi:10.1016/j.ceramint.2015.05.084

    Article  Google Scholar 

  • Reddy AA, Das S, Goel A, Sen R, Siegel R, Mafra L, Prakash GV, Ferreira JMF (2013) KCa4(BO3)3:Ln3+ (Ln = Dy, Eu, Tb) phosphors for near UV excited white–light–emitting diodes. AIP Adv 3(2):22126. doi:10.1063/1.4794189

    Article  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev Environ Contam T 221:107–127. doi:10.1007/978-1-4614-4448-0

    Google Scholar 

  • Singh AK, Nakate UT (2014) Properties of nanocrystalline zirconia. Scientific World J. doi:10.1155/2014/349457

    Google Scholar 

  • Som S, Sharma SK (2012) Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J Phys D: App Phys 415102. doi:10.1088/0022-3727/45/41/415102

  • Sun X, Huang S, Gu M, Gao Q, Gong X, Ye Z (2010) Enhanced Tb3+ luminescence by non-radiative energy transfer from Gd3+ in silicate glass. Physica B 405(2):569–572. doi:10.1016/j.physb.2009.09.067

    Article  Google Scholar 

  • Tiwari N, Kuraria RK, Tamrakar RK (2014) Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate. J Radiat Res App Sci 7(4):542–549. doi:10.1016/j.jrras.2014.09.006

  • Wang R, Zhou D, Qiu J, Yang Y, Wang C (2015) Color-tunable luminescence in Eu3+/Tb3+ co-doped oxyfluoride glass and transparent glass–ceramics. J Alloys Compd 629:310–314. doi:10.1016/j.jallcom.2014.12.233

    Article  Google Scholar 

  • Wani JA, Dhoble NS, Kokode NS, Dhoble SJ (2014) Synthesis and photoluminescence property of RE3+ activated Na2CaP2O7 phosphor. Adv Mat Lett 5(8):459–464. doi:10.5185/amlett.2014.amwc.1211

    Article  Google Scholar 

  • Xiaoli J, Jun M, Xuecheng W, Ruifei D, Junxi W, Xiaoyan Y, Yiping Z, Guohong W, Fuhua Y, Jinmin L (2014) Investigation into low-temperature photoluminescence internal quantum efficiency and defect-recombination in InGaN. Phys Status Solidi C 11(3–4):718–721. doi:10.1002/pssc.201300479

    Google Scholar 

  • Zhang X, Gong M (2015) Doped KBaY(BO3)2 as near-ultraviolet-excited color-tunable phosphors. Ind Eng Chem Res 54:7632–7639. doi:10.1021/acs.iecr.5b01576

    Article  Google Scholar 

  • Zhang X, Zhou L, Pang Q, Shi J, Gong M (2014) Tunable luminescence and Ce3+ → Tb3+ → Eu3+ energy transfer of broadband-excited and narrow line red emitting Y2SiO5: Ce3+, Tb3+, Eu3+ phosphor. The J Phys Chem C 118:7591–7598

    Article  Google Scholar 

  • Zhang M, Liang Y, Xu S, Zhu Y, Wu X, Liu S (2016a) Energy transfer mechanism of tunable emitting. CrystEngComm 18:68–76. doi:10.1039/C5CE01814E

    Article  Google Scholar 

  • Zhang Y, Gong W, Yu J, Cheng Z, Ning G (2016b) Multi-color luminescence properties and energy transfer behaviour in host-sensitized CaWO4:Tb3+, Eu3+ phosphors. RSC Adv 6:30886–30894. doi:10.1039/C6RA01862A

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the University of the Free State South Africa and OPCW for all the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ahemen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahemen, I., Dejene, F.B. Luminescence and energy transfer mechanism in Eu3+/Tb3+-co-doped ZrO2 nanocrystal rods. J Nanopart Res 19, 6 (2017). https://doi.org/10.1007/s11051-016-3703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3703-8

Keywords

Navigation