Skip to main content
Log in

Synthesis and dielectric analyses of NiS reinforced Polyaniline nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nickel sulphide (NiS) nanoparticles were synthesised by microwave-assisted-solvothermal method, pure Polyaniline (PANI) and Polyaniline with NiS (NiS–PANI) were synthesized at various weight percentages of NiS such as 1%, 5% and 15% by the oxidation polymerization method. The XRD pattern of NiS nanoparticles confirmed the formation of hexagonal structure, and its particle size was estimated by the Debye–Scherrer formula as 19 nm. The UV–visible absorption spectra recorded 200–1200 nm wavelength region and the bandgap was calculated from Tauc Plot. The morphology of PANI and NiS–PANI composites were observed as non-homogenous and agglomerated by field emission scanning electron microscope (FESEM). The FTIR spectra confirm the functional groups of the synthesized materials. The LCZ parameters were measured with the frequency of (1 Hz (hertz)–1 MHz (megahertz)) at room temperature was carried out, and the dielectric loss, dielectric constant, modulus plot and AC conductivity parameters were calculated for synthesized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. G. Merlin, C. Kavitha, A. Vedhi, S. Mohamad, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.06.472

    Article  Google Scholar 

  2. J.Z. Mbese, P.A. Ajibade, Polymers 6, 2332–2344 (2014). https://doi.org/10.3390/polym6092332

    Article  CAS  Google Scholar 

  3. T.R. Heera, L. Cindrella, Int. J. Polym. Mater. Polym. Biomater. 59, 607–621 (2010). https://doi.org/10.1080/00914031003760725

    Article  CAS  Google Scholar 

  4. M. Goswami, S. Sahoo, A.K. Meikap, R. Ghosh, 978-1-4673-0074-21111$26.00 @2011 IEEE.

  5. M.S.G. Hameda, S.O. Osenib, A. Kumar, G. Sharma, G.T. Molaa, Sol. Energy 195, 310–317 (2020). https://doi.org/10.1016/j.solener.2019.11.068

    Article  CAS  Google Scholar 

  6. A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  7. Y. Wang, N. Herron, J. Lumin. 70, 48–59 (1996). https://doi.org/10.1016/0022-2313(96)00043-9

    Article  CAS  Google Scholar 

  8. P. Lokanatha Reddy, K. Deshmukh, T. Kovářík, D. Reiger, N.A. Nambiraj, R. Lakshmipathy, S.K. Khadheer Pasha, Mater. Res. Express 7, 064007 (2020). https://doi.org/10.1088/2053-1591/ab955f

    Article  CAS  Google Scholar 

  9. W.S. Chi, J.W. Han, S. Yang, D.K. Roh, H. Lee, J.H. Kim, Chem. Commun. 48, 9501–9503 (2012). https://doi.org/10.1039/C2CC34559E

    Article  CAS  Google Scholar 

  10. C.P. Singh, K.S. Bindra, S.M. Oak, Pramana J. Phys. 75, 1169–1173 (2010). https://doi.org/10.1007/s12043-010-0202-9

    Article  CAS  Google Scholar 

  11. A. Mostafaei, A. Zolriasatein, Progr. Nat. Sci. Mater. Int. 22, 273–280 (2012). https://doi.org/10.1016/j.pnsc.2012.07.002

    Article  Google Scholar 

  12. F. Soofivand, E. Esmaeili, M. Sabet, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 29, 858–865 (2018). https://doi.org/10.1007/s10854-017-7981-4

    Article  CAS  Google Scholar 

  13. M. Pal, N.R. Mathews, E. Sanchez-Mora et al., J. Nanopart. Res. 17, 301 (2015). https://doi.org/10.1007/s11051-015-3103-5

    Article  CAS  Google Scholar 

  14. S. Riyaz, A. Parveen, A. Azam, Perspect. Sci. 8, 632–635 (2016). https://doi.org/10.1016/j.pisc.2016.06.041

    Article  Google Scholar 

  15. L. Huang et al., Ceram. Int. 43, 3080–3088 (2017). https://doi.org/10.1016/j.ceramint.2016.11.118

    Article  CAS  Google Scholar 

  16. S.N. Nagaveena, C.K.M. Kumar, Int. J. Eng. Res. Appl. 3, 1214–1218 (2013)

    Google Scholar 

  17. L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao, J. Jiang, Electrochim. Acta 182, 361–367 (2015). https://doi.org/10.1016/j.electacta.2015.09.024

    Article  CAS  Google Scholar 

  18. A. Batool, F. Kanwal, A. Abbas, S. Riaz, S. Naseem, IEEE Trans. Magn. 50, 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2320448

    Article  CAS  Google Scholar 

  19. M. Salavati-Niasari, G. Banaiean-Monfared, H. Emadi, M. Enhessari, C. R. Chim. 16, 929–936 (2013). https://doi.org/10.1016/j.crci.2013.01.011

    Article  CAS  Google Scholar 

  20. A. Rasool, T.Z. Rizvi, S. Nayab, Z. Iqbal, J. Alloy. Compd. 854, 156661 (2021). https://doi.org/10.1016/j.jallcom.2020.156661

    Article  CAS  Google Scholar 

  21. V.N. Kamat Dalal, H.V. Keer, J. Less-Common Metals 40, 145–151 (1975). https://doi.org/10.1016/0022-5088(75)90190-3

    Article  Google Scholar 

  22. S. Senthilkumar, A. Rajendran, MOJ Polym. Sci. 1, 6 (2017). https://doi.org/10.15406/mojps.2017.01.00031

    Article  Google Scholar 

  23. J. Bhadra, A. Popelka, A. Abdulkareem, Z. Ahmad, F. Touati, N. Al-Thani, RSC Adv. 9, 12496 (2019). https://doi.org/10.1039/c9ra00936a

    Article  CAS  Google Scholar 

  24. Y. Zhang, P. Chen, F. Wen, C. Huang, H. Wang, Ionics 22, 1095–1102 (2016). https://doi.org/10.1007/s11581-015-1634-5

    Article  CAS  Google Scholar 

  25. K.Y. Yasoda, S. Kumar, M.S. Kumar, K. Ghosh, S.K. Batabyal, Mater. Today Chem. 19, 100394 (2021). https://doi.org/10.1016/j.mtchem.2020.100394

    Article  CAS  Google Scholar 

  26. V. Ratchagar, K. Jagannathan, Orient. J. Chem. 32, 207–212 (2016). https://doi.org/10.13005/ojc/320121

    Article  CAS  Google Scholar 

  27. V.K. Shukla, P. Yadav, R.S. Yadav, P. Mishraa, A.C. Pandeya, Nanoscale 4, 3886–3893 (2012). https://doi.org/10.1039/C2NR30963G

    Article  CAS  Google Scholar 

  28. K.J. Ratchagar, J. Alloy. Compd. 689, 1088–1095 (2016). https://doi.org/10.1016/j.jallcom.2016.08.058

    Article  CAS  Google Scholar 

  29. S.M. Chauhan, J. Mahida, B.S. Chakrabarty, J. Nano Adv. Mater. 4, 9–17 (2016). https://doi.org/10.18576/jnam/040102

    Article  Google Scholar 

  30. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh et al., J. Mater. Sci. Mater. Electron. 28, 559–575 (2017). https://doi.org/10.1007/s10854-016-5559-1

    Article  CAS  Google Scholar 

  31. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh et al., J. Mater. Sci. Mater. Electron. 28, 973–986 (2017). https://doi.org/10.1007/s10854-016-5616-9

    Article  CAS  Google Scholar 

  32. X. Xia, Z. Zhong, G.J. Weng, Mech. Mater. 109, 42–50 (2017). https://doi.org/10.1016/j.mechmat.2017.03.014

    Article  Google Scholar 

  33. E. Padmini, K. Ramachandran, Mater. Res. Express 6, 115919 (2019). https://doi.org/10.1088/2053-1591/ab4afc

    Article  Google Scholar 

  34. A.M. Maharramov, M.A. Ramazanov, F.V. Hajiyeva, Chalcogenide Lett. 13, 35–40 (2016)

    CAS  Google Scholar 

  35. S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011

    Article  Google Scholar 

  36. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 31, 210281 (2021). https://doi.org/10.1002/adfm.202102812

    Article  CAS  Google Scholar 

  37. V. Ratchagar, K. Jagannathan, J. Supercond. Novel Magn. 33, 3433–3441 (2020). https://doi.org/10.1007/s10948-020-05592-1

    Article  CAS  Google Scholar 

  38. B.P. Das, R.N.P. Choudhary, P.K. Mahapatra, Indian J. Eng. Mater. Sci. 15, 152–156 (2008)

    CAS  Google Scholar 

  39. K.S. Hemalatha, G. Sriprakash, M.V.N. Ambika Prasad, R. Damle, K. Rukmani, J. Appl. Phys. 118, 154103 (2015). https://doi.org/10.1063/1.4933286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to management of SRM institute of Science and Technology for the support and motivation.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannathan.

Ethics declarations

Conflict of interest

I am submitting herewith my original research article entitled “Synthesis and dielectric analyses of NiS reinforced Polyaniline nanocomposites” I assure you that the work described has not been applied for any other journal that is not under consideration for any journal.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevagan, K., Jagannathan, K. Synthesis and dielectric analyses of NiS reinforced Polyaniline nanocomposites. J Mater Sci: Mater Electron 32, 27409–27421 (2021). https://doi.org/10.1007/s10854-021-07116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07116-6

Navigation