Skip to main content
Log in

The evolution of structure and properties in GdMn(1−x)TixO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the effects of Ti doping on the microstructure, dielectric, and magnetic properties of GdMn(1−x)TixO3 (x = 0.00–0.15) ceramic samples synthesized using a solid-state reaction were investigated. All the experimental samples formed a single-phase structure, and no structural transformation occurred within the experimental doping range; however, Ti doping caused lattice shrinkage. Ti doping reduced the grain size, and the microstructure of the synthesized samples appeared more compact in scanning electron microscopy images. The lattice distortion of GdMn(1−x)TixO3 caused by Ti substitution at the Mn sites resulted in changes in the Raman vibration modes. X-ray photoelectron spectroscopy results showed that the valence state transition of the Ti and Mn ions occurred and the concentration of Ti4+, Mn3+ ions and oxygen vacancies changed due to the charge compensation induced by Ti doping. Ti doping had a significant influence on the size and concentration of cation vacancies in the GdMn(1−x)TixO3 samples. Appropriate Ti doping was shown to reduce the dielectric loss, improve the frequency stability of the dielectric constant, and significantly affect the long-range ordering of Gd3+ magnetic moments and clearly reduce magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, Y. Tokura, Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys. Rev. B 72(10), 100102 (2005)

    Article  CAS  Google Scholar 

  2. H.Y. Dai, F.J. Ye, T. Li, G.S. Gong, L.T. Gu, K. Peng, Z.P. Chen, Effect of Zr substitution on the microstructure and magnetic properties of CuFeO2 ceramics. Appl. Phys. A 125(1), 43 (2019)

    Article  CAS  Google Scholar 

  3. Y. Romaguera-Barcelay, J. Agostinho Moreira, A. Almeida, P.B. Tavares, J. Pérez de la Cruz, Structural, electrical and magnetic properties of magnetoelectric GdMnO3 thin films prepared by a sol-gel method. Thin Solid Films 564, 419 (2014)

    Article  CAS  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(17), 759 (2006)

    Article  CAS  Google Scholar 

  5. H.Y. Dai, H.Z. Liu, K. Peng, F.J. Ye, T. Li, J. Chen, Z.P. Chen, Effect of barium doping on the properties of GdMnO3 multiferroic ceramics. J. Mater. Sci.: Mater. Electron. 30(3), 2523 (2019)

    CAS  Google Scholar 

  6. J. Hemberger, S. Lobina, H.A.K. Krug von Nidda, N. Tristan, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Complex interplay of 3d and 4f magnetism in La1−xGdxMnO3. Phys. Rev. B 70(2), 024414 (2004)

    Article  CAS  Google Scholar 

  7. A. Pal, W. Prellier, P. Murugavel, Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3. J. Phys.: Condens. Matter 30(12), 125801 (2018)

    CAS  Google Scholar 

  8. L. Li, L. Lin, Z.B. Yan, Q.Y. He, J.M. Liu, Multiferroicity and phase transitions in Tm-substituted GdMnO3. J. Appl. Phys. 112(3), 034115 (2012)

    Article  CAS  Google Scholar 

  9. A. Modi, N.K. Gaur, Structural, electrical and magnetic phase evolution of Cr substituted GdMn1-xCrxO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 644, 575 (2015)

    Article  CAS  Google Scholar 

  10. H.F. He, B. Zhao, N. Qi, B. Wang, Z.Q. Chen, X.L. Su, X.F. Tang, Role of vacancy defects on the lattice thermal conductivity in In2O3 thermoelectric nanocrystals: a positron annihilation study. J. Mater. Sci. 53(18), 12961 (2018)

    Article  CAS  Google Scholar 

  11. S.X. Jin, P. Zhang, E. Lu, L. Guo, B.Y. Wang, X.Z. Cao, Correlation between Cu precipitates and irradiation defects in Fe–Cu model alloys investigated by positron annihilation spectroscopy. Acta Mater. 103, 658 (2016)

    Article  CAS  Google Scholar 

  12. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)

    Article  CAS  Google Scholar 

  13. A. Nandy, A. Roychowdhury, T. Kar, D. Das, S.K. Pradhan, Effect of sodium doping on microstructure, lattice distortion and magnetic properties of GdMnO3 tiny single crystals. RSC Adv. 6(25), 20609 (2016)

    Article  CAS  Google Scholar 

  14. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38(5), 3829 (2012)

    Article  CAS  Google Scholar 

  15. K. Brinkman, T. Iijima, K. Nishida, T. Katoda, H. Funakubo, The influence of acceptor doping on the structure and electrical properties of sol-gel derived BiFeO3 thin films. Ferroelectrics 357, 35 (2007)

    Article  CAS  Google Scholar 

  16. X.L. Wen, Z. Chen, E.H. Liu, X. Lin, C.L. Chen, Effect of Ba and Mn doping on microstructure and multiferroic properties of BiFeO3 ceramics. J. Alloys Compd. 678, 511 (2016)

    Article  CAS  Google Scholar 

  17. C.F. Chung, J.P. Lin, J.M. Wu, Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 88(24), 242909 (2006)

    Article  CAS  Google Scholar 

  18. G.S. Arya, N.S. Negi, Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 46(9), 095004 (2013)

    Article  CAS  Google Scholar 

  19. S. Mahana, B. Rakshit, P. Nandi, R. Basu, S. Dhara, U. Manju, S.D. Mahanti, D. Topwal, Site substitution in GdMnO3: effects on structural, electronic, and magnetic properties. Phys. Rev. B 102(24), 245120 (2020)

    Article  CAS  Google Scholar 

  20. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R=Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85(5), 054303 (2012)

    Article  CAS  Google Scholar 

  21. M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys. Rev. B 57(5), 2872 (1998)

    Article  CAS  Google Scholar 

  22. S. Mahana, B. Rakshit, R. Basu, S. Dhara, B. Joseph, U. Manju, S.D. Mahanti, D. Topwal, Local inversion symmetry breaking and spin-phonon coupling in the perovskite GdCrO3. Phys. Rev. B 96(10), 104106 (2017)

    Article  Google Scholar 

  23. N.D. Todorov, M.V. Abrashev, V.G. Ivanov, G.G. Tsutsumanova, V. Marinova, Y.Q. Wang, M.N. Iliev, Comparative Raman study of isostructural YCrO3 and YMnO3: effects of structural distortions and twinning. Phys. Rev. B 83(22), 224303 (2011)

    Article  CAS  Google Scholar 

  24. M.N. Iliev, M.V. Abrashev, J. Laverdiere, S. Jandl, M.M. Gospodinov, Y.Q. Wang, Y.Y. Sun, Distortion-dependent Raman spectra and mode mixing in RMnO3 perovskites (R=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y). Phys. Rev. B 73(6), 064302 (2006)

    Article  CAS  Google Scholar 

  25. D. Singh, R. Gupta, K.K. Bamzai, Electrical and magnetic properties of GdCrxMn1-xO3 (x=0.0, 0.1) multiferroic nanoparticles. J. Mater. Sci.: Mater. Electron. 28(7), 5295 (2017)

    CAS  Google Scholar 

  26. T.S. Chan, R.S. Liu, C.C. Yang, W.H. Li, Y.H. Lien, C.Y. Huang, J.F. Lee, Chemical size effect on the magnetic and electrical properties in the (Tb1-xEux)MnO3 (0 ≤ x ≤1.0) system. J. Phys. Chem. B 111(9), 2262 (2007)

    Article  CAS  Google Scholar 

  27. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)

    Article  CAS  Google Scholar 

  28. W. Kallel, S. Bouattour, L.F.V. Ferreira, A.M.B. Rego, Synthesis, XPS and luminescence (investigations) of Li+ and/or Y3+ doped nanosized titanium oxide. Mater. Chem. Phys. 114(1), 304 (2009)

    Article  CAS  Google Scholar 

  29. X.Y. Du, C.T. Li, J. Zhang, L.K. Zhao, S.H. Li, Y. Lyu, Y.D. Zhang, Y.C. Zhu, L. Huang, Highly efficient simultaneous removal of HCHO and elemental mercury over Mn–Co oxides promoted Zr–AC samples. J. Hazard. Mater. 408, 124830 (2021)

    Article  CAS  Google Scholar 

  30. X.Q. Jia, L.B. Xie, Z. Li, Y. Li, R.M. Ming, Q.Y. Zhang, X.Y. Mi, S.H. Zhan, Photo-electro-Fenton-like process for rapid ciprofloxacin removal: The indispensable role of polyvalent manganese in Fe-free system. Sci. Total Environ. 768, 144368 (2021)

    Article  CAS  Google Scholar 

  31. F.Z. Huang, X.M. Lu, Z. Wang, W.W. Lin, Y. Kan, H.F. Bo, W. Cai, J.S. Zhu, Impact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin films. Appl. Phys. A 97(3), 699 (2009)

    Article  CAS  Google Scholar 

  32. P. Mohanty, D. Kabiraj, R.K. Mandal, P.K. Kulriya, A.S.K. Sinha, C. Rath, Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique. J. Magn. Magn. Mater. 355, 240 (2014)

    Article  CAS  Google Scholar 

  33. P. Tiwari, C. Rath, Evolution of structure and magnetic properties of stoichiometry and oxygen rich LaMnO3 nanoparticles. J. Magn. Magn. Mater. 441, 635 (2017)

    Article  CAS  Google Scholar 

  34. M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys. 66(3), 841 (1994)

    Article  CAS  Google Scholar 

  35. R. Sarkar, B. Sarkar, S. Pal, Monovalent (Li+1) doping effect in multiferroic GdMnO3. Bull. Mater. Sci. 43(1), 64 (2020)

    Article  CAS  Google Scholar 

  36. H.O. Rodrigues, G.F.M. Pires, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids 71(9), 1329 (2010)

    Article  CAS  Google Scholar 

  37. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88(21), 212907 (2006)

    Article  CAS  Google Scholar 

  38. M.A. Dar, K. Majid, K.M. Batoo, R.K. Kotnala, Dielectric and impedance study of polycrystalline Li0.35–0.5xCd0.3NixFe2.35–0.5xO4 ferrites synthesized via a citrate-gel auto combustion method. J. Alloys Compd. 632(12), 307 (2015)

    Google Scholar 

  39. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J. Appl. Phys. 101(8), 084116 (2007)

    Article  CAS  Google Scholar 

  40. P. Octavio, B. Mona, G. Karim, D. Pedro, G. Dionisio, M. Carlos, Spin reversal and ferrimagnetism in (Gd, Ca)MnO3. J. Mater. Chem. 12, 2480 (2002)

    Article  Google Scholar 

  41. P. Tiwari, S. Kumar, C. Rath, Structural and magnetic phase transitions along with optical properties in GdMn1-xFexO3 perovskite. J. Appl. Phys. 126(4), 045102 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 11775192, 11975211 and 12005194] and the Natural Science Foundation of Henan Province [Grant Numbers 212300410092, 212102210135, 20A430033, 212102210485].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Dai, H., Li, T. et al. The evolution of structure and properties in GdMn(1−x)TixO3 ceramics. J Mater Sci: Mater Electron 32, 27348–27361 (2021). https://doi.org/10.1007/s10854-021-07106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07106-8

Navigation