Skip to main content
Log in

Effects of Ho doping on the structural, dielectric, and magnetic properties of GdMnO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Ho doping on the microstructure, composition, vacancy defects, and magnetic properties of Gd1 − xHoxMnO3 (GHMO, x = 0.00-0.20) ceramics synthesized using the solid-state reaction method were investigated. The results revealed that the orthorhombic perovskite structure was maintained in all GHMO ceramics, while the addition of Ho ions induced lattice deformation. Ho doping displayed the function of decreasing the dielectric loss and improving the dielectric constant frequency stability. The positron annihilation lifetime spectroscopy demonstrated that when Ho content increased, the vacancy concentration initially increased and subsequently decreased. The magnetic properties measurements showed that Ho doping had a significant impact on the long-range order of Gd moments, magnetic transition temperature, and magnetization. The correlation study of structure and properties shows that the development of magnetic characteristics was strongly related to the vacancy concentration in GHMO samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Lin, L. Li, Z.B. Yan, Y.M. Tao, S. Dong, J.M. Liu, Ferroelectricity of polycrystalline GdMnO3 and multifold magnetoelectric responses. Appl. Phys. a-Mat. Sci. & Process. 112(4), 947–954 (2013)

    Article  CAS  Google Scholar 

  2. H. Dai, T. Li, R. Xue, Z. Chen, Y. Xue, Effects of europium substitution on the microstructure and electric properties of bismuth ferrite ceramics. J. Supercond. Novel Magn. 25, 109–115 (2011)

    Article  Google Scholar 

  3. N. Andreev, N. Abramov, V. Chichkov, A. Pestun, T. Sviridova, Y. Mukovskii, Fabrication and study of GdMnO3 Multiferroic Thin Films. Acta Phys. Pol., A 117, 218–220 (2010)

    Article  CAS  Google Scholar 

  4. A. Lahmar, S. Habouti, M. Dietze, C.H. Solterbeck, M. Es-Souni, Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl. Phys. Lett. 94(1), 012903 (2009)

    Article  Google Scholar 

  5. J. Chen, H.Y. Dai, M.M. Wang, F.J. Ye, T. Li, M.S. Xu, Z.P. Chen, An evaluation of the impact of ca substitution on the structural and magnetic properties of GdMnO3 ceramics. Ceram. Int 46, 6360–6367 (2020)

    Article  CAS  Google Scholar 

  6. A. Skaugen, D.K. Shukla, R. Feyerherm, E. Dudzik, Z. Islam, J. Strempfer, Magnetic Order in GdMnO3 in Magnetic Fields Workshop on Resonant Elastic X-ray Scattering in Condensed Matter (Oxford, England, 2013)

    Google Scholar 

  7. P. Tiwari, S. Kumar, C. Rath, Structural and magnetic phase transitions along with optical properties in GdMn1-xFexO3 perovskite. J.  Appl. Phys. 126(4), 054102 (2019)

    Google Scholar 

  8. P. Tiwari, D. Gangwar, C. Rath, Studies on the structural, magnetic and electrochemical properties of GdMn1-xFexO3 (x = 0, 0.1 and 0.2) perovskite compounds. New J. Chem 45, 13608–13619 (2021)

    Article  CAS  Google Scholar 

  9. J. Agostinho Moreira, A. Almeida, M.R. Chaves, J. Kreisel, J. Oliveira, F. Carpinteiro, P.B. Tavares, Magnetically-induced lattice distortions and ferroelectricity in magnetoelectric GdMnO3. J. Phys.-Condens. Matt. 24(43), 436002 (2012)

    Article  Google Scholar 

  10. S. Samantaray, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, B.K. Roul, Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics. J. Magn. Magn. Mater 339, 168–174 (2013)

    Article  CAS  Google Scholar 

  11. Y. Romaguera-Barcelay, J. Agostinho Moreira, A. Almeida, P.B. Tavares, J. Pérez de la Cruz, Structural, electrical and magnetic properties of magnetoelectric GdMnO3 thin films prepared by a sol-gel method. Thin Solid Films 564, 419–425 (2014)

    Article  CAS  Google Scholar 

  12. F. Gao, J. Chen, M.M. Farhoudi, X.L. Wang, S.X. Dou, Structures, and far-infrared and Raman spectra of GdMn1 – xCoxO3 (x = 0–1.0). Thin Solid Films 518, E24–E27 (2010)

    Article  Google Scholar 

  13. S. Mahana, S.K. Pandey, B. Rakshit, P. Nandi, R. Basu, S. Dhara, S. Turchini, N. Zema, U. Manju, S.D. Mahanti, D. Topwal, Site substitution in GdMnO3: Effects on structural, electronic, and magnetic properties. Phys. Rev. B 102(4), 245120 (2020)

    Article  CAS  Google Scholar 

  14. A. Nandy, A. Roychowdhury, T. Kar, D. Das, S.K. Pradhan, Effect of sodium doping on the microstructure, lattice distortion and magnetic properties of GdMnO3 tiny single crystals. RSC Adv. 6, 20609–20620 (2016)

    Article  CAS  Google Scholar 

  15. A. Pal, W. Prellier, P. Murugavel, Spin-flop and magnetodielectric reversal in yb substituted GdMnO3. J. Phys. Condens. Matter 30, 125801 (2018)

    Article  CAS  Google Scholar 

  16. L.C. Damonte, G.N. Darriba, M. Rentería, Structural and electronic properties of Al-doped ZnO semiconductor nanopowders: interplay between XRD and PALS experiments and first-principles/DFT modeling. J. Alloys Compd 735, 2471–2478 (2018)

    Article  CAS  Google Scholar 

  17. H.S.L.R. Krause-Rehberg, T. Abgarjan, A. Polit, Review of defect investigations by means of positron annihilation inII – VI compound semiconductors. Appl. Phys. A 66(6), 599 (1998)

    Article  CAS  Google Scholar 

  18. Structures, R1ETVELD, a profile refinement method for nuclear and magnetic. J. Appl. Cryst 2, 65–71 (1969)

    Article  Google Scholar 

  19. M. Wang, H. Dai, T. Li, J. Chen, F. Yan, R. Xue, X. Xing, D. Chen, T. Ping, J. He, The evolution of structure and properties in GdMn(1 – x)TixO3 ceramics. J. Mater. Sci.: Mater. Electron 32, 27348–27361 (2021)

    CAS  Google Scholar 

  20. M.T. J.A.A, M.J. Casa ´is, Martı ´nez-Lope, Martı ´nez, Complex Magnetism and magnetic structures of the Metastable HoMnO3Perovskite. Inorg. Chem. 40, 1020–1028 (2001)

    Article  Google Scholar 

  21. R.D. Shannon, Revised effective ionic Radii and systematic studies of interatomie distances in Halides and Chaleogenides.  Acta Cryst. 32, 751–767 (1976)

    Article  Google Scholar 

  22. D. Singh, R. Gupta, K.K. Bamzai, Electrical and magnetic properties of GdCrxMn1-xO3 (x = 0.0, 0.1) multiferroic nanoparticles. J. Mater. Sci.-Mater. Electron 28, 5295–5307 (2017)

    Article  CAS  Google Scholar 

  23. N.D. Todorov, M.V. Abrashev, V.G. Ivanov, G.G. Tsutsumanova, V. Marinova, Y.Q. Wang, M.N. Iliev, Comparative Raman study of isostructural YCrO3and YMnO3: Effects of structural distortions and twinning. Phys. Rev. B 83(22), 224303 (2011)

    Article  Google Scholar 

  24. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering ofRCrO3perovskites (R= Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85(5), 054303 (2012)

    Article  Google Scholar 

  25. H. Dai, F. Ye, T. Li, G. Gong, L. Gu, K. Peng, Z. Chen, Effect of zr substitution on the microstructure and magnetic properties of CuFeO2 ceramics. Appl. Phys. A 125(1), 1–8 (2019)

    Article  Google Scholar 

  26. H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, X.F. Tang, Interplay between Point defects and thermal conductivity of chemically synthesized Bi2Te3 nanocrystals studied by Positron Annihilation. J. Phys. Chem. C 118, 22389–22394 (2014)

    Article  CAS  Google Scholar 

  27. F. Huang, X. Lu, Z. Wang, W. Lin, Y. Kan, H. Bo, W. Cai, J. Zhu, Impact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin films. Appl. Phys. A 97, 699–704 (2009)

    Article  CAS  Google Scholar 

  28. C.-Y. Tsay, C.-L. Chen, Improved electrical properties of p-type CuGaO2 semiconductor thin films through mg and zn doping. Ceram. Int 43, 2563–2567 (2017)

    Article  CAS  Google Scholar 

  29. H.O. Rodrigues, G.F.M. Pires Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids 71, 1329–1336 (2010)

    Article  CAS  Google Scholar 

  30. G.S. Arya, N.S. Negi, Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3nanoparticles. J. Phys. D: Appl. Phys. 46(9), 095004 (2013)

    Article  CAS  Google Scholar 

  31. A. Pal, P. Murugavel, Impact of cationic vacancies on the physical characteristics of multiferroic GdMnO3. J. Appl. Phys. 123(3), 234102 (2018)

    Article  Google Scholar 

  32. D. Dhruv, V.G. Shrimali, K. Thakrar, Z. Joshi, S. Solanki, A.D. Joshi, P.S. Solanki, N.A. Shah, Investigations on the electrical properties of sol–gel grown nanostructured GdMnO3. Ferroelectrics 571, 230–237 (2021)

    Article  CAS  Google Scholar 

  33. A. Pal, P. Murugavel, Investigations on the effect of magnetic ordering on dielectric relaxation in polycrystalline GdMn1-Fe O3. Phys. B: Condens. Matter 555, 99–105 (2019)

    Article  CAS  Google Scholar 

  34. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J. Appl. Phys. 101(8), 084–116 (2007)

    Article  Google Scholar 

  35. L. Ni, X.M. Chen, Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 91(12), 122905 (2007)

    Article  Google Scholar 

  36. O. Peña, M. Bahout, K. Ghanimi, P. Duran, D. Gutierrez, C. Moure, Spin reversal and ferrimagnetism in (gd,ca)MnO3. J. Mater. Chem. 12, 2480–2485 (2002)

    Article  Google Scholar 

  37. M.S. Al Qahtani, M.S. Alshammari, H.J. Blythe, A.M. Fox, G.A. Gehring, N. Andreev, V. Chichkov, Y. Mukovskii, Magnetic and optical properties of multiferroic GdMnO3 film, International Conference on Strongly Correlated Electron Systems (SCES)Cambridge, ENGLAND, 2012

Download references

Funding

National Natural Science Foundation of China, 12005194, Jing Chen,Natural Science Foundation of Henan Province, 212300410092, Haiyan Dai, the Higher Levels of Young Teachers Funding Scheme of Henan Province, 2019GGJS057, Haiyan Wang, the Key Scientific Research Projects of Colleges and Universities in Henan Province, 20A430017, Haiyan Wang.

Author information

Authors and Affiliations

Authors

Contributions

GZ: investigation, Performed the experiment, Data curation, Writing—Original draft preparation, Visualization. HW: data curation, Writing-Original draft preparation. JC: investigation, Resources, Validation, Funding acquisition. DL: software, Validation. TL: formal analysis. HD: conceptualization, Writing—Review & Editing, Investigation, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Haiyan Wang or Jing Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. All data and materials are real and available.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wang, H., Chen, J. et al. Effects of Ho doping on the structural, dielectric, and magnetic properties of GdMnO3 ceramics. J Mater Sci: Mater Electron 34, 366 (2023). https://doi.org/10.1007/s10854-022-09747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09747-9

Navigation