Skip to main content
Log in

Inflating strategy to fabricate highly dispersed Fe, N co-doped hierarchically porous carbon for ORR and supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Doped-carbon nanomaterials as effective electrocatalysts have been received widespread attention in oxygen reduction reaction (ORR) and supercapacitors system. Herein, the high-active Fe atoms dispersed on hierarchically porous N-doped carbon (FeNC-X) is synthesized via inflating the Fe-ion-denatured egg-white, followed by activation and pyrolysis. Among them, the as-prepared FeNC-900 for ORR that has an inner-connecting hierarchically porous structure shows a superior performance with a limiting current density of 5.28 mA cm−2 and half-wave potential (E1/2) of 0.839 V (vs RHE), and exhibits a 4 e ORR pathway in the alkaline medium. FeNC-900 also shows better durability and good methanol tolerance than those of commercial Pt/C. Besides, FeNC-900 exhibits an outstanding specific capacity of 258 F g−1 at 1 A g−1 for supercapacitor. The method presented here may provide a cost-efficient approach to fabricate carbon-based materials for ORR and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30, 1703691 (2018)

    Article  CAS  Google Scholar 

  2. Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 311, 804903 (2019)

    Google Scholar 

  3. L. Ma, Z. Bi, Y. Xue, W. Zhang, Q. Huang, L. Zhang, Y. Huang, Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 8, 5812–5842 (2020)

    Article  CAS  Google Scholar 

  4. J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5, 2411–2428 (2017)

    Article  CAS  Google Scholar 

  5. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  6. K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49, 8602–8607 (2010)

    Article  CAS  Google Scholar 

  7. H.-W. Liang, X. Cao, F. Zhou, C.-H. Cui, W.-J. Zhang, S.-H. Yu, A free-standing pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 23, 1467–1471 (2011)

    Article  CAS  Google Scholar 

  8. C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 47, 3588–3591 (2008)

    Article  CAS  Google Scholar 

  9. J.-C. Li, P.-X. Hou, C. Liu, Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction. Small 13, 1702002 (2017)

    Article  CAS  Google Scholar 

  10. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009)

    Article  CAS  Google Scholar 

  11. W. Tian, H. Zhang, X. Duan, H. Sun, G. Shao, S. Wang, Porous carbons: structure-oriented design and versatile applications. Adv. Funct. Mater. 30, 1909265 (2020)

    Article  CAS  Google Scholar 

  12. M. Chen, D. Yu, X. Zheng, X. Dong, Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J. Energy Storage 21, 105–112 (2019)

    Article  Google Scholar 

  13. W. Xin, Y. Song, Mesoporous carbons: recent advances in synthesis and typical applications. RSC Adv. 5, 83239–83285 (2015)

    Article  CAS  Google Scholar 

  14. J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020)

    Article  CAS  Google Scholar 

  15. C. Xiong, Q. Yang, W. Dang, M. Li, B. Li, J. Su, Y. Liu, W. Zhao, C. Duan, L. Dai, Y. Xu, Y. Ni, Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. J. Power Sources 447, 227387 (2020)

    Article  CAS  Google Scholar 

  16. G. Lin, R. Ma, Y. Zhou, C. Hu, M. Yang, Q. Liu, S. Kaskel, J. Wang, Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J. Colloid Interface Sci. 527, 230–240 (2018)

    Article  CAS  Google Scholar 

  17. Q. Chen, X. Tan, Y. Liu, S. Liu, M. Li, Y. Gu, P. Zhang, S. Ye, Z. Yang, Y. Yang, Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 8, 5773–5811 (2020)

    Article  CAS  Google Scholar 

  18. K. Liang, Y. Xu, L. Wang, Y. Liu, Y.-N. Liu, Alkali-driven assembly of protein-rich biomass boosts the electrocatalytic activity of the derived carbon materials for oxygen reduction. ChemCatChem 11, 4822–4829 (2019)

    Article  CAS  Google Scholar 

  19. H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019)

    Article  CAS  Google Scholar 

  20. X. Dong, Y.Q. Zhang, An insight on egg white: from most common functional food to biomaterial application. J. Biomed. Mater. Res. 109, 1045–1058 (2021)

    Article  CAS  Google Scholar 

  21. M. Ai, N. Xiao, A. Jiang, Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocoll. 111, 106271 (2021)

    Article  CAS  Google Scholar 

  22. E.D.N.S. Abeyrathne, X. Huang, D.U. Ahn, Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides—a review. Poul. Sci. 97, 1462–1468 (2018)

    Article  CAS  Google Scholar 

  23. A. Cooper, M.W. Kennedy, Biofoams and natural protein surfactants. Biophys. Chem 151, 96–104 (2010)

    Article  CAS  Google Scholar 

  24. K. Lomakina, K. Míková, A study of the factors affecting the foaming properties of egg white—a review. Czech J. Food Sci. 24, 110–118 (2006)

    Article  CAS  Google Scholar 

  25. M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W. Zhu, F. Wei, Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6, 10759–10769 (2012)

    Article  CAS  Google Scholar 

  26. T. Suzuki, H. Tanaka, M. Hayase, S. Tsushima, S. Hirai, Investigation of porous structure formation of catalyst layers for proton exchange membrane fuel cells and their effect on cell performance. Int. J. Hydrogen Energy 41, 20326–20335 (2016)

    Article  CAS  Google Scholar 

  27. D. Wang, W. Zhou, R. Zhang, J. Zeng, Y. Du, S. Qi, C. Cong, C. Ding, X. Huang, G. Wen, T. Yu, Mass production of large-sized, nonlayered 2D nanosheets: their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis. Adv. Mater. 30, 1803569 (2018)

    Article  CAS  Google Scholar 

  28. Q. He, Y. Meng, H. Zhang, Y. Zhang, Q. Sun, T. Gan, H. Xiao, X. He, H. Ji, Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Sci. China Chem. 63, 810–817 (2020)

    Article  CAS  Google Scholar 

  29. S. Zhao, L. Zhang, B. Johannessen, M. Saunders, C. Liu, S.-Z. Yang, S.P. Jiang, Designed iron single atom catalysts for highly efficient oxygen reduction reaction in alkaline and acid media. Adv. Mater. Interfaces 8, 2001788 (2021)

    Article  CAS  Google Scholar 

  30. H. Zhao, C. Sun, Z. Jin, D.-W. Wang, X. Yan, Z. Chen, G. Zhu, X. Yao, Carbon for the oxygen reduction reaction: a defect mechanism. J. Mater. Chem. A 3, 11736–11739 (2015)

    Article  CAS  Google Scholar 

  31. Y. Cheng, M. Wang, S. Lu, C. Tang, X. Wu, J.-P. Veder, B. Johannessen, L. Thomsen, J. Zhang, S.-Z. Yang, S. Wang, S.P. Jiang, First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Appl. Catal. B 284, 9717 (2021)

    Article  CAS  Google Scholar 

  32. X. Yan, Y. Yao, Y. Chen, Highly active and stable Fe-N-C oxygen reduction electrocatalysts derived from electrospinning and in situ pyrolysis. Nanoscale Res. Lett. 13, 218 (2018)

    Article  CAS  Google Scholar 

  33. M.X. Chen, M. Zhu, M. Zuo, S.Q. Chu, J. Zhang, Y. Wu, H.-W. Liang, X. Feng, Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem. Int. Ed. 59, 1627–1633 (2020)

    Article  CAS  Google Scholar 

  34. Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang, H. Zhao, Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 9, 2123–2137 (2016)

    Article  CAS  Google Scholar 

  35. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1290 (2007)

    Article  CAS  Google Scholar 

  36. J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)

    Article  CAS  Google Scholar 

  37. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J. Phys. Chem. B 109, 7330–7338 (2005)

    Article  CAS  Google Scholar 

  38. Z. Guo, C. Jiang, C. Teng, G. Ren, Y. Zhu, L. Jiang, Sulfur, trace nitrogen and iron codoped hierarchically porous carbon foams as synergistic catalysts for oxygen reduction reaction. ACS Appl. Mater. Interface 6, 21454–21460 (2014)

    Article  CAS  Google Scholar 

  39. K. Xia, Q. Gao, J. Jiang, J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46, 1718–1726 (2008)

    Article  CAS  Google Scholar 

  40. Q. Li, C. Lu, D. Xiao, H. Zhang, C. Chen, L. Xie, Y. Liu, S. Yuan, Q. Kong, K. Zheng, J. Yin, β-Ni(OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtubes for high-performance asymmetric supercapacitors. ChemElectroChem 5, 1279–1287 (2018)

    Article  CAS  Google Scholar 

  41. W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng. 5, 4144–4153 (2017)

    Article  CAS  Google Scholar 

  42. G. Sun, J. Wang, X. Liu, D. Long, W. Qiao, L. Ling, Ion Transport behavior in triblock copolymer-templated ordered mesoporous carbons with different pore symmetries. J. Phys. Chem. C 114, 18745–18751 (2010)

    Article  CAS  Google Scholar 

  43. H. Zhang, J. Gu, J. Tong, Y. Hu, B. Guan, B. Hu, J. Zhao, C. Wang, Hierarchical porous MnO2 /CeO2 with high performance for supercapacitor electrode. Chem. Eng. J. 286, 139–149 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51872013, 52073009, 51672019), the National Key Research and Development Program of China (2017YFA0206902), the 111 Project (B14009).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ and GX; writing—original draft preparation: GX and XW; characterization and analysis: XW; supervision, validation, writing-review and editing: XL, YC, YL, SD and ZK.

Corresponding author

Correspondence to Ying Zhu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Wang, X., Li, X. et al. Inflating strategy to fabricate highly dispersed Fe, N co-doped hierarchically porous carbon for ORR and supercapacitor. J Mater Sci: Mater Electron 32, 26341–26350 (2021). https://doi.org/10.1007/s10854-021-06986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06986-0

Navigation