Skip to main content
Log in

Structural, electrical, and magnetic properties of erbium (Er3+) substituted Cu–Cd nano-ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we reported the structural, electrical, and magnetic properties of erbium Er3+-substituted Cu–Cd nano-ferrites with generalized formula Cu0.8Cd0.2ErxFe2−xO4 (where x = 0.000, 0.0010, 0.0015, 0.002, 0.0025, 0.003), as synthesized by the Citrate-Gel Auto-Combustion. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies were carried out to investigate their microstructural and surface morphology. The XRD measurements confirm pure cubic spinel phase composition of these nanoparticles. The crystallite size ranges over 9.22–19.22 nm and it reduces with the increase in erbium Er3+ concentration from 0.000 to 0.003. The vibration properties were carried out by using FTIR spectrometer. The two probe measurements were used to determine DC resistivity, Curie temperature, and DC conductivity. The plot between DC electrical resistivity and temperature indicates the semiconductor behavior. At room temperature, the vibrating sample magnetometer (VSM) was used to investigate magnetic properties, and the observed values revealed the ferrimagnetic behavior with high saturation magnetization (34.24 emu/g) and high coercivity (1121.70 Oe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Ahmad, T. Abbas, M.U. Islam, A. Maqsood, Study of cation distribution for Cu-Co nanoferrites synthesized by the sol-gel method. Ceram. Int. 39(6), 6735–6741 (2013). https://doi.org/10.1016/j.ceramint.2013.02.001

    Article  CAS  Google Scholar 

  2. M. Mustaqeem et al., Synthesis of CuFe2–xErxO4 nanoparticles and their magnetic, structural and dielectric properties. Physica B (2020). https://doi.org/10.1016/j.physb.2020.412176

    Article  Google Scholar 

  3. V.V. Atuchin et al., Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J. Phys. Chem. C 120(9), 5114–5123 (2016). https://doi.org/10.1021/acs.jpcc.5b12243

    Article  CAS  Google Scholar 

  4. C. Nordhei, K. Mathisen, I. Bezverkhyy, D. Nicholson, Decomposition of carbon dioxide over the putative cubic spinel nanophase cobalt, nickel, and zinc ferrites. J. Phys. Chem. C 112(16), 6531–6537 (2008). https://doi.org/10.1021/jp7112158

    Article  CAS  Google Scholar 

  5. N. Masunga, O.K. Mmelesi, K.K. Kefeni, B.B. Mamba, Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J. Environ. Chem. Eng. 7(3), 103179 (2019). https://doi.org/10.1016/j.jece.2019.103179

    Article  CAS  Google Scholar 

  6. R. Rajesh Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of lanthanum on structural, optical, dielectric and magnetic properties of Mn1-xCuxFe1.85La0.15O4 spinel nanoferrites. Ceram. Int. 43(17), 15868–15879 (2017). https://doi.org/10.1016/j.ceramint.2017.08.160

    Article  CAS  Google Scholar 

  7. D.A. Vinnik et al., Crystal growth, structural characteristics and electronic structure of Ba1-xPbxFe12O19 (x = 0.23–0.80) hexaferrites. J. Alloys Compd. 844, 156036 (2020). https://doi.org/10.1016/j.jallcom.2020.156036

    Article  CAS  Google Scholar 

  8. S. Nag, A. Roychowdhury, D. Das, S. Das, S. Mukherjee, Structural and magnetic properties of erbium (Er3+) doped nickel zinc ferrite prepared by sol-gel auto-combustion method. J. Magn. Magn. Mater. 466, 172–179 (2018). https://doi.org/10.1016/j.jmmm.2018.06.084

    Article  CAS  Google Scholar 

  9. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Electrochemical characterization of Mn: Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14(11), 1582–1590 (2014). https://doi.org/10.1016/j.cap.2014.08.001

    Article  Google Scholar 

  10. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.3679688

    Article  Google Scholar 

  11. A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013). https://doi.org/10.1016/j.molstruc.2012.11.007

    Article  CAS  Google Scholar 

  12. T.R. Tatarchuk et al., Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  CAS  Google Scholar 

  13. M. Jafari Fesharaki, G. Nabiyouni, B. Shahdoost, S.F. Akhtarianfar, Magnetic investigation of various NiFe2xBixO4 ferrite nanostructures synthesized by ball milling technique. J. Clust. Sci. 27(3), 1005–1015 (2016). https://doi.org/10.1007/s10876-015-0907-5

    Article  CAS  Google Scholar 

  14. R. Mondal, S. Dey, S. Singha, P. Dasgupta, A. Poddar, S. Kumar, Mechanical milling induced enhancement of magnetic and hyperfine properties of nanosized Co0.3Zn0.7Fe2O4. AIP Conf. Proc. (2015). https://doi.org/10.1063/1.4917751

    Article  Google Scholar 

  15. K.H. Maria, U.S. Akther, I.N. Esha, M.S. Hossain, M.N.I. Khan, Estimation of structural, electrical, and magnetic variations of Mn-Ni- Zn ferrites by substituting rare earth Y3+ for high-frequency applications. J. Supercond. Nov. Magn. 33(7), 2133–2142 (2020). https://doi.org/10.1007/s10948-020-05471-9

    Article  CAS  Google Scholar 

  16. R.C. Ambare, B.J. Lokhande, Ru incorporation enhanced electrochemical performance of spray deposited Mn: Co3O4 nano-composite: electrochemical approach. J. Anal. Appl. Pyrolysis 132, 245–253 (2018). https://doi.org/10.1016/j.jaap.2018.01.013

    Article  CAS  Google Scholar 

  17. M. Chakrabarti, D. Sanyal, A. Chakrabarti, Preparation of Zn(1–x)CdxFe2O4 (x = 0.0, 0.1, 0.3, 0.5, 0.7 and 1.0) ferrite samples and their characterization by Mössbauer and positron annihilation techniques. J. Phys. Condens. Matter. 19(23), 236210 (2007). https://doi.org/10.1088/0953-8984/19/23/236210

    Article  CAS  Google Scholar 

  18. M. Hashim et al., Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04686-4

    Article  Google Scholar 

  19. M.A. Khan et al., Magnetic, ferromagnetic resonance and electrical transport study of Ni1-xTbxFe2O4 spinel ferrites. Ceram. Int. 40(2), 3571–3577 (2014). https://doi.org/10.1016/j.ceramint.2013.09.071

    Article  CAS  Google Scholar 

  20. A.K. Saadon, Study of the effect of CeO2 on the structural properties of cadmium ferrite. Energy Procedia 157, 561–567 (2019). https://doi.org/10.1016/j.egypro.2018.11.220

    Article  CAS  Google Scholar 

  21. S. Singhal, S. Jauhar, K. Chandra, S. Bansal, Spin canting phenomenon in cadmium doped cobalt ferrites, using sol—gel auto combustion method. Bull. Mater. Sci. 36(1), 107–114 (2013)

    Article  CAS  Google Scholar 

  22. R.C. Ambare, B.J. Lokhande, Spray pyrolyzed Ni incorporated cobalt oxide thin film electrodes and their electrochemical study. J. Mater. Sci. Mater. Electron. 29(19), 16289–16294 (2018). https://doi.org/10.1007/s10854-018-9718-4

    Article  CAS  Google Scholar 

  23. N. Boda, K.C.B. Naidu, K. Mujasambatoo, G.H.R. Joice, J.L. Naik, D. Ravinder, Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Res. Appl. Chem. 10(1), 4752–4763 (2020). https://doi.org/10.33263/BRIAC101.752763

    Article  CAS  Google Scholar 

  24. A. Zubair et al., Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys. 7, 3203–3208 (2017). https://doi.org/10.1016/j.rinp.2017.08.035

    Article  Google Scholar 

  25. I. Ahmad, T. Abbas, A.B. Ziya, A. Maqsood, Structural and magnetic properties of erbium doped nanocrystalline Li-Ni ferrites. Ceram. Int. 40(6), 7941–7945 (2014). https://doi.org/10.1016/j.ceramint.2013.12.142

    Article  CAS  Google Scholar 

  26. P. Donta, V.K. Katrapally, V.R. Pendyala, Dielectric response of NixZn1-xAlFeO4 nanoferrites. NanoWorld J. 2(2), 27–34 (2016). https://doi.org/10.17756/nwj.2016-028

    Article  CAS  Google Scholar 

  27. N.S. Kumar, K.V. Kumar, Synthesis and structural properties of bismuth doped cobalt nanoferrites prepared by sol-gel combustion method. World J. Nano Sci. Eng. 05(04), 140–151 (2015). https://doi.org/10.4236/wjnse.2015.54016

    Article  Google Scholar 

  28. M.N. Siddique, T. Ali, A. Ahmed, P. Tripathi, Nano-structures & nano-objects enhanced electrical and thermal properties of pure and Ni substituted ZnO nanoparticles. Nano-Struct. Nano-Objects 16, 156–166 (2018). https://doi.org/10.1016/j.nanoso.2018.06.001

    Article  CAS  Google Scholar 

  29. K.V. Babu, G.V.S. Kumar, G. Satyanarayana, B. Sailaja, C.C. Sailaja Lakshmi, Microstructural and magnetic properties of Ni1-xCuxFe2O4 (x = 0.05, 0.1 and 0.15) nano-crystalline ferrites. J. Sci. Adv. Mater. Devices 3(2), 236–242 (2018). https://doi.org/10.1016/j.jsamd.2018.04.003

    Article  Google Scholar 

  30. B.J. Madhu, S.T. Ashwini, B. Shruthi, B.S. Divyashree, A. Manjunath, H.S. Jayanna, Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite/PVP composites. Mater. Sci. Eng. B 186, 1–6 (2014). https://doi.org/10.1016/j.mseb.2014.02.018

    Article  CAS  Google Scholar 

  31. Y.K. Dasan, B.H. Guan, M.H. Zahari, L.K. Chuan, Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS ONE 12(1), 1–14 (2017). https://doi.org/10.1371/journal.pone.0170075

    Article  CAS  Google Scholar 

  32. M.A. Ahmed, S.F. Mansour, M. Afifi, Structural and electrical properties of nanometric NiCu ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 324(1), 4–10 (2012). https://doi.org/10.1016/j.jmmm.2011.07.010

    Article  CAS  Google Scholar 

  33. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, Calcium and strontium thiobarbiturates with discrete and polymeric structures. J. Coord. Chem. 66(23), 4119–4130 (2013). https://doi.org/10.1080/00958972.2013.860450

    Article  CAS  Google Scholar 

  34. M.A. Iqbal, I. Ali, H.M. Khan, G. Mustafa, I. Ali, Study of electrical transport properties of Eu+3 substituted MnZn-ferrites synthesized by co-precipitation technique. Ceram. Int. 39, 1539–1545 (2013)

    Article  Google Scholar 

  35. P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel-copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.009

    Article  CAS  Google Scholar 

  36. B.H. Devmunde, A.V. Raut, S.D. Birajdar, S.J. Shukla, D.R. Shengule, K.M. Jadhav, Structural, electrical, dielectric, and magnetic properties of Cd2+ substituted nickel ferrite nanoparticles. J. Nanopart. 2016, 1–8 (2016). https://doi.org/10.1155/2016/4709687

    Article  CAS  Google Scholar 

  37. E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/439/1/012015

    Article  Google Scholar 

  38. M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 16, 102973 (2020). https://doi.org/10.1016/j.rinp.2020.102973

    Article  Google Scholar 

  39. K. Jalaiah, K.C. Mouli, R.V. Krishnaiah, K.V. Babu, P.S.V.S. Rao, The structural, DC resistivity and magnetic properties of Zr and Co co-substituted Ni0.5Zn0.5Fe2O4. Heliyon 5(6), e01800 (2019). https://doi.org/10.1016/j.heliyon.2019.e01800

    Article  CAS  Google Scholar 

  40. A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017). https://doi.org/10.1016/j.jallcom.2016.08.199

    Article  CAS  Google Scholar 

  41. I. Kartharinal Punithavathy et al., Impact of lanthanum ions on magnetic and dielectric properties of cobalt nanoferrites. J. Mater. Sci. Mater. Electron. 31(12), 9783–9795 (2020). https://doi.org/10.1007/s10854-020-03523-3

    Article  CAS  Google Scholar 

  42. A. Pathania et al., Investigation of structural, optical, magnetic and electrical properties of tungsten doped Ni–Zn nano-ferrites. Physica B 531, 45–50 (2018). https://doi.org/10.1016/j.physb.2017.12.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Laxman Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinod, G., Rajashekhar, K., Ravinder, D. et al. Structural, electrical, and magnetic properties of erbium (Er3+) substituted Cu–Cd nano-ferrites. J Mater Sci: Mater Electron 32, 24069–24082 (2021). https://doi.org/10.1007/s10854-021-06869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06869-4

Navigation