Skip to main content

Advertisement

Log in

Investigation on temperature-dependent structural, dielectric and impedance characteristics of Cu-doped CaFexTi1-xO3-δ nanotitanates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent days, the development of low-cost, sustainable, efficient electrode materials for energy storage applications is of great interest. Herewith, Cu-doped Ca(Ti0.9Fe0.1)O3-δ (Cu:CTF) double-perovskite electroceramic, heat-treated at diverse temperatures (800–1100 °C) were prepared using sol–gel technology. X-ray diffraction pattern confirmed the orthorhombic structure of the prepared Cu:CTF perovskites. Significant traces of TiO2, CuO vanishes at elevated temperatures, which is evident from the XRD pattern. Further, the secondary phase traces were also observed in XRD, but without changing its crystal structure of Cu:CTF nanotitanate. The crystalline nature of the Cu:CTF ceramic was identified around 750 °C employing TG/DTA. UV–visible spectroscopy demonstrates the poor visible absorbance region towards the red shift with the bandgap variation of 5.28–5.42 eV. The nature of the Cu:CTF particles were analyzed using electron microscopes with the estimated particle size between 52 and 190 nm. Considering the action of temperature and frequency, complex impedance spectroscopy was utilized to analyse the inter- and intra-grain inclusions. Complex impedance spectroscopy study confirms the existence of dipole–dipole relaxation and Maxwell–Wagner (MW) polarisation for the samples heated above 900 °C. However, the a.c. test reveals the presence of conduction due to the addition of Cu2+ ions to CaTi1-xFexO3-δ perovskite, which enhances oxygen vacancies and is strongly dependent on the inhibition of the hopping conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Data will be available on request.

Code availability

Not applicable

References

  1. K. Kendall, High-Temperature Solid Oxide Fuel Cells for the 21st Century Portable early market SOFCs, 2nd edn, (Academic Press, Boston), 10, 329–356 (2016).

  2. K. Kendall, Introduction to SOFCs, in: K. Kendall, M. Kendall High-Temperature Solid Oxide Fuel Cells for the 21st Century, 2nd edn, (Academic Press, Boston), 1, 1–24 (2016).

  3. K. Kendall, High-Temperature Solid Oxide Fuel Cells for the 21st Century, 2nd edn, (Academic Press, Boston), 2, 25–50 (2016).

  4. A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sust. Energ. Rev 6, 433–455 (2002)

    Article  CAS  Google Scholar 

  5. N.P.B. Mihails Kusnezoff, Andrew Gyekenyesi, Michael Halbig, Advances in Solid Oxide Fuel Cells X, International Symposium on Solid Oxide Fuel Cells: Materials, Science, and Technology, John Wiley and Sons, Florida, 144 (2014).

  6. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Materials for Sustainable Energy, Co-Published with Macmillan Publishers Ltd, UK 1, 213–223 (2010)

    Google Scholar 

  7. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 72, 141–337 (2015)

    Article  CAS  Google Scholar 

  8. M.A. Ramírez, P.R. Bueno, J.A. Varela, E. Longo, Non-Ohmic and dielectric properties of a Ca2Cu2Ti4O12 polycrystalline system. Appl. Phys. Lett. 89, 212102 (2006)

    Article  Google Scholar 

  9. T.-T. Fang, H.-K. Shiau, Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc 87, 2072–2079 (2004)

    Article  CAS  Google Scholar 

  10. X. Song, Y. Zhang, Y. Chen, Z. Shen, T. Zhang, Effect of sintering atmosphere on the microstructure and dielectric properties of barium strontium titanate glass–ceramics. J. Mater. Sci.: Mater. Electron. 29, 56–62 (2018)

    CAS  Google Scholar 

  11. B. Kamecki, T. Miruszewski, J. Karczewski, Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials. J. Electroceram. 42, 31–40 (2019)

    Article  CAS  Google Scholar 

  12. M.A. Ahmed, S.T. Bishay, Effect of annealing time, weight pressure and Fe doping on the electrical and magnetic behavior of calcium titanate. Mater. Chem. Phys. 114, 446–450 (2009)

    Article  CAS  Google Scholar 

  13. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013)

    Article  Google Scholar 

  14. M. Gazda, P. Jasinski, B. Kusz, B. Bochentyn, K. Gdula-Kasica, T. Lendze, W. Lewandowska-Iwaniak, A. Mielewczyk-Gryn, S. Molin, Perovskites in solid oxide fuel cells, in solid state phenomena. Trans Tech Publications Ltd. 183, 65–70 (2012)

    CAS  Google Scholar 

  15. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935 (2011)

    Article  CAS  Google Scholar 

  16. Panday, M. Sridhar, M. Vinoth, S. Surendhiran, V. Rajendran, and P. Susthitha Menon, Investigation on electrical conductivity of strontium (Sr2+) influenced CaTi0.8Fe0.2O3 polycrystalline perovskite, In 2016 IEEE International Conference on Semiconductor Electronics (ICSE), 192–195. IEEE, 2016.

  17. S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, Inherent nanoscale bend of crystal lattice in Fe-doped calcium copper titanate. Appl. Phys. Lett. 89, 121903 (2006)

    Article  Google Scholar 

  18. J. Wang, L. Feng, A. Lei, K. Zhao, A. Yan, Preparation and dielectric properties of CaCu3Ti4O12 ceramics with different additives. J. Mater. Eng. Perform. 23, 3133–3140 (2014)

    Article  CAS  Google Scholar 

  19. N. Raeis Hosseini, N.M. Sammes, J.S. Chung, Manganese-doped lanthanum calcium titanate as an interconnect for flat-tubular solid oxide fuel cells, J. Power Sources 245, 599- 608 (2014).

  20. A. Bandyopadhyay, S. Mondal, M. Pal, U. Pal, M. Pal, Effect of Iron substitution on structure and optical properties of nanocrystalline CaTiO3. J. Nano Res 3, 123–128 (2008)

    Article  CAS  Google Scholar 

  21. P.H.B.J.S. Jang, J.S. Lee, K.T. Lim, O.S. Jung, E.D. Jeong, J.S. Bae, H.G. Kim, Photocatalytic hydrogen production in water-methanol mixture over iron-doped CaTiO3. Bull. Korean Chem. Soc. 32, 95–99 (2011)

    Article  CAS  Google Scholar 

  22. L. Zhao, K. Chen, Y. Liu, B. He, A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells. J. Power Sources 342, 313–319 (2017)

    Article  CAS  Google Scholar 

  23. F.M. Figueiredo, M.R. Soares, V.V. Kharton, E.N. Naumovich, J.C. Waerenborgh, J.R. Frade, Properties of CaTi1−xFexO3−δ ceramic membranes. J. Electroceram. 13, 627–636 (2004)

    Article  CAS  Google Scholar 

  24. H.P. Beck, W. Eiser, R. Haberkorn, Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different sol–gel preparation methods and characterization of nanoscaled BaTiO3. J. Eur. Ceram. Soc. 21, 687–693 (2001)

    Article  CAS  Google Scholar 

  25. S.P. Mathu, P.D. Nehru, V. Murugan, K. Arumugam, A. Sundaramoorthy, R. Venkatachalam, Effect of temperature on the electrical properties of nanocrystalline CaTi1−xFexO3−Δ perovskite. J Mater Sci: Mater Electron. 27, 620–630 (2016)

    CAS  Google Scholar 

  26. M.R. Shah, A.K.M.A. Hossain, Structural, Dielectric and Complex Impedance Spectroscopy Studies of Lead Free Ca0.5+xNd0.5−x(Ti0.5Fe0.5)O3, J. Mater. Sci. Technol. 29, 323–329 (2013).

  27. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  28. S. R. Srither, A. Karthik, M. Selvam, K. Saminathan, V. Rajendran, Karan VIS Kaler. Nano-sized MnO2 particles produced by spray pyrolysis for a Zn/MnO2 primary cell: comparative discharge performance studies with their bulk counterparts." RSC adv. 4, 42129–42136 (2014).

  29. R. Kumar, M. Zulfequar, L. Sharma, V.N. Singh, T.D. Senguttuvan, Growth of nanocrystalline CaCu3Ti4O12 ceramic by the microwave flash combustion method: structural and impedance spectroscopic studies. Cryst. Growth Des. 15, 1374–1379 (2015)

    Article  CAS  Google Scholar 

  30. M.H. El-Sadek, O.A. Fouad, M.B. Morsi, K. El-Barawy, Controlling conditions of fluidized bed chlorination of upgraded titania slag. Trans. Indian Inst. Met. 72, 423–427 (2019)

    Article  CAS  Google Scholar 

  31. D. Astruc, Nanoparticles and Catalysis (John Wiley & Sons, USA, 2008)

    Google Scholar 

  32. B. Cheng, Y.-H. Lin, H. Yang, J. Lan, C.-W. Nan, X. Xiao, J. He, High Dielectric Permittivity Behavior in Cu-Doped CaTiO3. J. Am. Ceram. Soc. 92, 2776–2779 (2009)

    Article  CAS  Google Scholar 

  33. J.P. Singh, S. Gautam, P. Kumar, A. Tripathi, J.-M. Chen, K.H. Chae, K. Asokan, Correlation between the dielectric properties and local electronic structure of copper doped calcium titanate. J. Alloys Compd. 572, 84–89 (2013)

    Article  CAS  Google Scholar 

  34. B.M. Patil, R.S. Srinivasa, S.R. Dharwadkar, Synthesis of CaTiO3 from calcium titanyl oxalate hexahydrate (CTO) as precursor employing microwave heating technique. Bull. Mater. Sci. 30, 225–229 (2007)

    Article  CAS  Google Scholar 

  35. P. Thiruramanathan, A. Marikani, D. Madhavan, S. Bharadwaj, A.M. Awasthi, Influence of calcination temperature on sol–gel synthesized single-phase bismuth titanate for high dielectric capacitor applications. Int. J. Mater. Res. 107, 484–492 (2016)

    Article  CAS  Google Scholar 

  36. Ranjit Kumar, M. Zulfequar, T. D. Senguttuvan, Improved giant dielectric properties in microwave flash combustion derived and microwave sintered CaCu3Ti4O12 ceramics, J. Electroceram. 42, 41–46 (2019).

  37. L. Singh, K.D. Mandal, U.S. Rai, A.K. Rai, Effect of site selection on dielectric properties of Fe doped CaCu3Ti4O12 electro-ceramic synthesized by citrate nitrate gel route. Indian J. Phys. 88, 665–670 (2014)

    Article  CAS  Google Scholar 

  38. E.C. Hunter, P.D. Battle, R. Paria Sena, J. Hadermann, Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9, J. Solid State Chem. 248, 96–103 (2017).

  39. P. Thomas, K. Dwarakanath, K.B.R. Varma, T.R.N. Kutty, Nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J. Phys. Chem. Solids 69, 2594–2604 (2008)

    Article  CAS  Google Scholar 

  40. H. Ben Yahia, U.C. Rodewald, C. Feldmann, M. Roming, F. Weill, R. Pöttgen, X-Ray diffraction and SAED characterisations of RE4O4[PO4]Cl (RE = La, Pr, and Nd) and photoluminescence properties of Eu3+-doped La4O4[PO4]Cl, J. Mater. Chem. C 2, 1131- 1140 (2014).

  41. M. Bahout, S.S. Pramana, J.M. Hanlon, V. Dorcet, R.I. Smith, S. Paofai, S.J. Skinner, Stability of NdBaCo2−xMnxO5+δ (x = 0, 0.5) layered perovskites under humid conditions investigated by high-temperature in situ neutron powder diffraction. J. Mater. Chem. A 3, 15420–15431 (2015)

    Article  CAS  Google Scholar 

  42. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  Google Scholar 

  43. J.-W. Jeon, D.-W. Jeon, T. Sahoo, M. Kim, J.-H. Baek, J.L. Hoffman, N.S. Kim, I.-H. Lee, Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film. J. Alloys Compd. 509, 10062–10065 (2011)

    Article  CAS  Google Scholar 

  44. R. Muccillo, J.R. Carmo, Electrical conductivity of Ca1−xSrxTi0.65Fe0.35O3−δ, x = 0, 0.5 and 1, polycrystalline compounds in the 300–500K range. Mater. Res. Bull. 47, 1204–1211 (2012)

    Article  CAS  Google Scholar 

  45. A. Kumar, R.K. Dwivedi, V. Pal, Dielectric behavior and impedance spectroscopy of Ba1-xBixTi1-xFexO3 system. Adv. Mat. Res. 585, 190–194 (2012)

    CAS  Google Scholar 

  46. S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior. RSC Adv 4, 1212–1224 (2014)

    Article  CAS  Google Scholar 

  47. A. Kumar, R.K. Dwivedi, V. Pal, Dielectric behavior and impedance spectroscopy of Ba1-xBixTi1-xFexO3 system. Adv. Mater. Res. 585, 190–194 (2012)

    Article  CAS  Google Scholar 

  48. N. Lenin, K. Sakthipandi, R.R. Kanna, J. Rajesh, Effect of neodymium ion on the structural, electrical and magnetic properties of nanocrystalline nickel ferrites. Ceram. Int. 44, 11562–11569 (2018)

    Article  CAS  Google Scholar 

  49. C. Mu, H. Zhang, Y. He, P. Liu, Influence of temperature on dielectric properties of Fe-doped CaCu3Ti4O12 ceramics. Physica B Condens. Matter 405, 386–389 (2010)

    Article  CAS  Google Scholar 

  50. A.K. Jonscher, The ‘Universal’’ dielectric response.’ Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  51. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline material. Adv. Phy. 18, 41–102 (1969)

    Article  CAS  Google Scholar 

  52. L.A. Dunyushkina, V.P. Gorelov, High temperature electrical behavior of CaTi1−xFexO3−δ (x = 0–0.5). Oxygen-ion, electronic and proton conductivity, Solid State Ion. 253,169–174 (2013).

Download references

Acknowledgements

The author (V.R) is thankful to K.S.Rangasamy College of Technology for providing in-house facility to carry out this work.

Funding

No funding received. Hence, it’s an in-house project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatachalam Rajendran.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

Hereby, we declare that the manuscript is our original work and not have been published or under editorial considerations anywhere else. The stated authors of the work, have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest. Further if our article has been accepted, we ensure that we will not publish it anywhere else in any form, in any language without getting consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridharpanday, M., Brindha, R., Vinoth, M. et al. Investigation on temperature-dependent structural, dielectric and impedance characteristics of Cu-doped CaFexTi1-xO3-δ nanotitanates. J Mater Sci: Mater Electron 32, 22076–22092 (2021). https://doi.org/10.1007/s10854-021-06677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06677-w

Navigation