Skip to main content
Log in

Probing the structural and electrical traits of lead-free Zn/Mn co-substituted CaCu3Ti4O12-based perovskite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite ceramics are captivating in the field of electronics by virtue of their exceptionally high dielectric permittivity and numerous potential applications such as power transmission, storage devices, and capacitors. Herein, Zn and Mn-co-substituted polycrystalline Ca1−xZnxCu3−yMnyTi4O12 (x = 0.05, 0.1, 0.15 and y = 0.1, 0.15, 0.2), a lead-free perovskite ceramics material is fabricated through the economically viable sol–gel technique and employed to examine the structural, morphological, dielectric, and electrical conductivity studies. Co-substitution of Zn and Mn ions leads to a significant reduction in the grain size for the CCTO ceramic compound. All the prepared ceramics exhibit a pristine cubic perovskite phase with a space group of Im-3. The surface topography of the as-prepared thermally etched CCTO ceramic exemplifies homogeneous grain distribution and minimal porosity on the surface. The incorporation of Zn and Mn ions increased the grain boundary resistance (RGB), lowering the dielectric loss and improving the temperature stability of the dielectric attributes. The relaxation dynamics were highlighted using the complex impedance and modulus framework, whereas the conduction framework was probed using electrical conductivity. The temperature progression of electrical conduction is implemented by Jonscher’s power law and outlined in terms of an overlapping large-polaron tunneling (OLPT) model. The comprehensive impedance and conductivity studies confirmed that the ceramics have a negative temperature coefficient of resistance (NTCR), acknowledging the semiconducting nature of the samples at an elevated temperature. Accordingly, the co-substitution of Zn and Mn ions at the A-sites improves the overall performance of dielectric and electrical features of the CCTO ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing can be possible on request.  

References

  1. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.H. Kim, A. Deep, Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 80, 105552 (2021)

    Article  CAS  Google Scholar 

  2. Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem. Soc. Rev. 49(4), 1109–1143 (2020)

    Article  CAS  Google Scholar 

  3. S. Zhang, B. Malič, J.F. Li, J. Rödel, Lead-free ferroelectric materials: prospective applications. J. Mater. Res. 36(5), 985–995 (2021)

    Article  CAS  Google Scholar 

  4. S. Behara, T. Poonawala, T. Thomas, Crystal structure classification in ABO3 perovskites via machine learning. Comput. Mater. Sci. 188, 110191 (2021)

    Article  CAS  Google Scholar 

  5. S.G. Infantiya, A. Aslinjensipriya, R.S. Reena, S. Deepapriya, J.D. Rodney, S.J. Das, C.J. Raj, Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review. J. Mater. Sci.: Mater. Electron. 33(20), 15992–16028 (2022)

    CAS  Google Scholar 

  6. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)

    Article  CAS  Google Scholar 

  7. G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics. J Phys. D: Appl. Phys. 38(11), 1824 (2005)

    Article  CAS  Google Scholar 

  8. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti3.95Zn0.05O12 ceramic. Ceram. Int. 44(6), 5996–6001 (2018)

    Article  CAS  Google Scholar 

  9. E. Swatsitang, P. Kumnorkaew, T. Putjuso, Thermal stability improvement of dielectric properties and non-ohmic characteristic of CaCu3+xTi4O12 ceramics via a Cu-nonstoichiometric approach. Ceram. Int. 47(17), 24149–24162 (2021)

    Article  CAS  Google Scholar 

  10. B. Yadav, K.K. Kar, M.K. Ghorai, D. Kumar, D. Yadav,  Impact of defect migration on electrical and dielectric properties in molten salt synthesized CaCu3Ti4O12 and customizing the properties by compositional engineering with Mg doping. Materials Chemistry and Physics 281, 125893 (2022)

    Article  CAS  Google Scholar 

  11. P. Mao, G. Lu, Q. Yan, A. Annadi, Y. Guo, Z. Wang, Z. Liu, B. Xie, L. Zhang, Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu3Ti4O12 ceramics. Ceram. Int. 48(21), 32156–32163 (2022)

    Article  CAS  Google Scholar 

  12. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153–2155 (2002)

    Article  CAS  Google Scholar 

  13. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002)

    Article  CAS  Google Scholar 

  14. M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, Extrinsic models for the dielectric response of CaCu3Ti4O12. J. Appl. Phys. 94(5), 3299–3306 (2003)

    Article  CAS  Google Scholar 

  15. X.J. Luo, Y.T. Zhang, D.H. Xu, S.S. Chen, Y. Wang, Y. Chai, Y.S. Liu, S.L. Tang, C.P. Yang, K. Bärner, Origin of the temperature stability of dielectric constant in CaCu3Ti4O12. Ceram. Int. 45(10), 12994–13003 (2019)

    Article  CAS  Google Scholar 

  16. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Revi. B 70(17), 172102 (2004)

    Article  Google Scholar 

  17. P. Mao, J. Wang, P. Xiao, L. Zhang, F. Kang, H. Gong, Colossal dielectric response and relaxation behavior in novel system of Zr4+ and Nb5+ co-substituted CaCu3Ti4O12 ceramics. Ceram. Int. 47(1), 111–120 (2021)

    Article  CAS  Google Scholar 

  18. S. Kumari, A. Kumar, V. Kumar, S.K. Dubey, P.K. Goyal, S. Kumar, A.L. Sharma, A. Arya, Structural, dielectric and ferroelectric properties of Cu2+-and Cu2+/Bi3+-doped BCZT lead-free ceramics: a comparative study. J. Mater. Sci.: Mater. Electron. 32(12), 16900–16915 (2021)

    CAS  Google Scholar 

  19. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadi, E.H. Raslan, Structural, morphological, and optical properties of strontium doped lead-free BCZT ceramics. Ceram. Int. 47(11), 15442–15457 (2021)

    Article  CAS  Google Scholar 

  20. J. Tang, Y. Teng, Y. Chen, X. Zhao, S. Wang, W. Wang, R. Ahuja, Reduction of the sintering temperature and dielectric loss of the CCTO ceramic by doping tellurite glass. Ceram. Int. 47(7), 10006–10012 (2021)

    Article  CAS  Google Scholar 

  21. A. Bendahhou, P. Marchet, E. Barkany, M. Abou-Salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J Alloy. Compd. 882, 160716 (2021)

    Article  CAS  Google Scholar 

  22. P. Sengupta, P. Sadhukhan, A. Ray, S. Mal, A. Singh, R. Ray, S. Bhattacharyya, S. Das,  Influence of activation energy on charge conduction mechanism and giant dielectric relaxation of sol-gel derived C3H7NH3PbBr3 perovskite: Act as high performing UV photodetector. J Alloy. Compd. 892, 162216 (2022)

    Article  CAS  Google Scholar 

  23. M.A. Subramanian, A.W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci. 4(3), 347–351 (2002)

    Article  CAS  Google Scholar 

  24. W. Li, R.W. Schwartz, Maxwell–Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Physical Review B 75(1), 012104 (2007)

    Article  Google Scholar 

  25. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  26. J. Boonlakhorn, P. Srepusharawoot, P. Thongbai, Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In3+/Ta5+) co-doped CaCu3Ti4O12 ceramics. Res. Phys. 16, 102886 (2020)

    Google Scholar 

  27. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, Effects of Ta5+ doping on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 32(10), 2423–2430 (2012)

    Article  CAS  Google Scholar 

  28. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure and enhanced dielectric response in mg doped CaCu3Ti4O12 ceramics. J. Alloy. Compd. 663, 345–350 (2016)

    Article  CAS  Google Scholar 

  29. P. Mao, J. Wang, L. He, L. Zhang, A. Annadi, F. Kang, Q. Sun, Z. Wang, H. Gong, Excellent capacitor–varistor properties in lead-free CaCu3Ti4O12–SrTiO3 system with a wrinkle structure via interface engineering. ACS Appl. Mater. Interfaces. 12(43), 48781–48793 (2020)

    Article  CAS  Google Scholar 

  30. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Func. Mater. 29(27), 1808118 (2019)

    Article  Google Scholar 

  31. A. Sakthisabarimoorthi, S.M.B. Dhas, R. Robert, M. Jose, Influence of Erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater. Res. Bull. 106, 81–92 (2018)

    Article  CAS  Google Scholar 

  32. E.M. Benali, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graca, M.A. Valente, B.F.O. Costa, Structural, morphological, Raman, dielectric and electrical properties of La1 – 2xBaxBixFeO3 (0.00 ≤ x ≤ 0.20) compounds. RSC Adv. 11(57), 36148–36165 (2021)

    Article  CAS  Google Scholar 

  33. G. Miao, N. Li, P. Li, J. Hao, W. Li, J. Du, W. Han, G. Li, C. Wang, P. Fu, Analysis of complex impedance and electrical conductivity of YCr0.5Mn0.5O3–CaCu3Ti4O12 negative temperature coefficient ceramics. Ceram. Int. 48(17), 24965–24978 (2022)

    Article  CAS  Google Scholar 

  34. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, The influence of cobalt (Co) doping on the electrical and dielectric properties of LaCr1−xCoxO3 perovskite-oxide compounds. Mater. Sci. Semicond. Process. 109, 104923 (2020)

    Article  CAS  Google Scholar 

  35. S. Lenka, T. Badapanda, P. Nayak, S. Sarangi, S. Anwar, Compositional induced dielectric relaxation and electrical conduction behavior of samarium modified bismuth sodium titanate ceramic. Ceram. Int. 47(4), 5477–5486 (2021)

    Article  CAS  Google Scholar 

  36. Z. Chchiyai, F. El Bachraoui, Y. Tamraoui, L. Bih, A. Lahmar, A. Faik, J. Alami, B. Manoun, Synthesis, structural refinement and physical properties of novel perovskite ceramics Ba1−xBixTi1−xMnxO3 (x = 0.3 and 0.4). Materi. Chem. Phys. 262, 124302 (2021)

    Article  CAS  Google Scholar 

  37. A. Bendahhou, K. Chourti, M. Loutou, E. Barkany, S. and, M. Abou-Salama, Impact of rare earth (RE3+= La3+, Sm3+) substitution in the A site perovskite on the structural, and electrical properties of ba(Zr0.9Ti0.1)O3 ceramics. RSC Adv. 12(18), 10895–10910 (2022)

    Article  CAS  Google Scholar 

  38. A. Rout, S. Agrawal, Investigation of electrical conduction in Ca6-xNa2Y2 (SiO4) 6F2:xEu3+ ceramic by complex impedance and electric modulus spectroscopy. Ceram. Int. 47(5), 7032–7044 (2021)

    Article  CAS  Google Scholar 

  39. M. Javed, A.A. Khan, S.N. Khisro, A. Majeed, J. Kazmi, R. Bilkees, M. Hussain, M.A. Mohamed, Charge conduction mechanism and non-debye type relaxation in LaCrO3 perovskite orthochromite. Mater. Chem. Phys. 292, 126522 (2022)

    Article  Google Scholar 

  40. M.Z.M. Halizan, Z. Mohamed, A.K. Yahya, Understanding the structural, optical, and dielectric characteristics of SrLaLiTe1 – xMnxO6 perovskites. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  41. S. Ren, J. Liu, D. Wang, J. Zhang, X. Ma, M. Knapp, L. Liu, H. Ehrenberg, Dielectric relaxation behavior induced by lithium migration in Li4Ti5O12 spinel. J. Alloy. Compd. 793, 678–685 (2019)

    Article  CAS  Google Scholar 

  42. S.I. Costa, M. Li, J.R. Frade, D.C. Sinclair, Modulus spectroscopy of CaCu3Ti4O12 ceramics: clues to the internal barrier layer capacitance mechanism. RSC Adv. 3(19), 7030–7036 (2013)

    Article  CAS  Google Scholar 

  43. M. Jebli, J. Dhahri, M.A. Albedah, M.B. Henda, H. Belmabrouk, M.L. Bouazizi, A. Hamdi, An investigation of the temperature-and frequency-dependent conductivity behavior and electrical properties of Ba0.97La0.02Ti0.9Nb0.08O3  compound using impedance spectroscopy. J Mol. Struct. 1254, 132238 (2022)

    Article  CAS  Google Scholar 

  44. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri, Conduction mechanisms study in CaCu2.8Ni0.2Ti4O12 ceramics sintered at different temperatures. J Alloy. Compd. 828, 154373 (2020)

    Article  Google Scholar 

  45. S. Nasri, M. Megdiche, M. Gargouri, DC conductivity and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in LiFeP2O7 ceramic. Ceram. Int. 42(1), 943–951 (2016)

    Article  CAS  Google Scholar 

  46. M. Jebli, C. Rayssi, J. Dhahri, M.B. Henda, H. Belmabrouk, A. Bajahzar, Structural and morphological studies, and temperature/frequency dependence of electrical conductivity of Ba0.97La0.02Ti1–xNb4x/5O3 perovskite ceramics. RSC Adv. 11(38), 23664–23678 (2021)

    Article  CAS  Google Scholar 

  47. M. Rani, S. Dahiya, N. Panwar, Optical, dielectric and photocatalytic investigation on Dy1-xHoxCrO3 (x = 0, 0.5) perovskites. Ceram. Int. 48(14), 19925–19936 (2022)

    Article  CAS  Google Scholar 

  48. S. Das, R.C. Sahoo, S. Mishra, D. Bhattacharya, T.K. Nath, Effects of Ni doping at Co-site on dielectric, impedance spectroscopy and AC-conductivity in La2CoMnO6 double perovskites. Appl. Phys. A 128(4), 354 (2022)

    Article  CAS  Google Scholar 

  49. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1– xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8(31), 17139–17150 (2018)

    Article  CAS  Google Scholar 

  50. M.U. Rehman, A. Manan, M.A. Khan, S.U. Khan, The effects of SiO2 addition on the phase, microstructure, dielectric, and energy storage properties of BaTiO3-based ceramics. Mater. Sci. Eng.: B 288, 116190 (2023)

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose. Moreover, the research did not involve any human participants or animals.

Author information

Authors and Affiliations

Authors

Contributions

SGI: Conceptualization, methodology, investigation, writing—original draft. AA and RSR: Investigation and review and editing. KJP and PS: Review and editing, visualization, formal analysis. CJR and SJD: Conceptualization, methodology, review and editing, supervision. 

Corresponding authors

Correspondence to C. Justin Raj or S. Jerome Das.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4774.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infantiya, S.G., Aslinjensipriya, A., Reena, R.S. et al. Probing the structural and electrical traits of lead-free Zn/Mn co-substituted CaCu3Ti4O12-based perovskite ceramics. J Mater Sci: Mater Electron 34, 1994 (2023). https://doi.org/10.1007/s10854-023-11393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11393-8

Navigation