Skip to main content
Log in

Effect of temperature and frequency on the dielectric properties of cellulose nanofibers from cotton

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work has been carried out to evaluate the dielectric properties and ac-electrical conductivity of cellulose nanofibers. The cellulose nanofibers (CNF) described in this work are the ones extracted from cotton via a simple acid hydrolysis method and are characterized with X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–Visible diffuse reflectance spectroscopy. The optical band gap of CNF found out using the Kubelka–Munk plot is 3.30 eV. The dielectric constant, dielectric loss, and ac-electrical conductivity of the prepared CNF have been investigated in the temperature range from 30 °C to 300 °C and in the frequency range from 50 Hz to 5 MHz. The synthesized system exhibits a higher dielectric constant value for all temperatures in the low-frequency (0.1 kHz) region and a frequency-independent behavior above 10 kHz. In the high-frequency region, the dielectric constant is independent of temperature. Also, the study shows that the conductivity increases with increasing frequency and temperature. The maximum values of ac-conductivity at room temperature (30 °C) and high temperature (300 °C) are found to be 4.58 × 10–5 S/cm and 2.26 × 10–4 S/cm, respectively. In brief, the studies point to the application potential of CNF for future flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Zeng, L. Deng, Y. Yao, R. Sun, J. Xu, C.P. Wong, J. Mater. Chem. C (2016). https://doi.org/10.1039/C6TC01501H

    Article  Google Scholar 

  2. L. Xie, X. Huang, Y. Huang, K. Yang, P. Jiang, J. Phys. Chem. C. (2013). https://doi.org/10.1021/jp407340n

    Article  Google Scholar 

  3. E. de MoraisTeixeria, A.C. Corrêa, A. Manzoli, F. de LimaLeite, C.R. de Oliveira, L.H.C. Mattoso, Cellulose (2010). https://doi.org/10.1007/s10570-010-9403-0

    Article  Google Scholar 

  4. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. (2011). https://doi.org/10.1039/C0CS00108B

    Article  Google Scholar 

  5. X. Wang, C. Yao, F. Wang, Z. Li, Small (2017). https://doi.org/10.1002/smll.201702240

    Article  Google Scholar 

  6. J. Jose, V. Thomas, A. Raj, J. John, R.M. Mathew, V. Vinod et al., J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.48272

    Article  Google Scholar 

  7. C. Chen, L. Hu, Acc. Chem. Res. (2018). https://doi.org/10.1021/acs.accounts.8b00391

    Article  Google Scholar 

  8. A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Biotechnol. Rep. (2019). https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  9. A. Ladhar, M. Arous, H. Kaddami, M. Raihane, M. Lahcini, A. Kallel et al., J. Non-Cryst. Solids (2013). https://doi.org/10.1016/j.jnoncrysol.2013.06.018

    Article  Google Scholar 

  10. A. Petritz, A. Wolfberger, A. Fian, M. Irimia-Vladu, A. Haase, H. Gold et al., Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4824701

    Article  Google Scholar 

  11. L.N. Dang, J. Seppälä, Cellulose (2015). https://doi.org/10.1007/s10570-015-0622-2

    Article  Google Scholar 

  12. Y.H. Jung, T.H. Chang, H. Zhang, C. Yao, Q. Zheng, V.W. Yang et al., Nat. Commun. (2015). https://doi.org/10.1038/ncomms8170

    Article  Google Scholar 

  13. B. Thomas, M.C. Raj, J. Joy, A. Moores, G.L. Drisko, C. Sanchez, Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.7b00627

    Article  Google Scholar 

  14. J. Jose, V. Thomas, V. Vinod, R. Abraham, S. Abraham, J Sci. Adv. Mat. Dev. (2019). https://doi.org/10.1016/j.jsamd.2019.06.003

    Article  Google Scholar 

  15. T.A. Prevost, T.V. Oommen, IEEE Electr. Insul. Mag. (2006). https://doi.org/10.1109/MEI.2006.1618969

    Article  Google Scholar 

  16. D. Le Bras, M. Strømme, A. Mihranyan, J. Phys. Chem. B. (2015). https://doi.org/10.1021/acs.jpcb.5b00715

    Article  Google Scholar 

  17. K.M. Kovalov, O.M. Alekseev, M.M. Lazarenko, Y.F. Zabashta, Y.E. Grabovskii, Y.T. Tkachov, Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2231-5

    Article  Google Scholar 

  18. A.M. Abdel-karim, A.H. Salama, M.L. Hassan, J. Phys. Org. Chem. (2018). https://doi.org/10.1002/poc.3851

    Article  Google Scholar 

  19. Y. Beeran, V. Bobnar, S. Gorgieva, Y. Grohens, M. Finšgar, S. Thomas, V. Kokol, RSC Adv. (2016). https://doi.org/10.1039/c6ra06744a

    Article  Google Scholar 

  20. Y.B. Pottathara, V. Bobnar, Y. Grohens, S. Thomas, R. Kargl, V. Kokol, Cellulose (2021). https://doi.org/10.1007/s10570-021-03701-4

    Article  Google Scholar 

  21. I.K. Ibrahim, S.M. Hussin, Y. Al-Obaidi, Int. J. Mater. Chem. Phys. 1, 99–109 (2015)

    Google Scholar 

  22. N. Pandi, S.H. Sonawane, K.A. Kishore, Ultrason. Sonochem. (2021). https://doi.org/10.1016/j.ultsonch.2020.105353

    Article  Google Scholar 

  23. R. Ahmadi, B. Ghanbarzadeh, A. Ayaseh, H.S. Kafil, H. Özyurt, A. Katourani, A. Ostadrahimi, Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.03.010

    Article  Google Scholar 

  24. A.D. French, Cellulose (2014). https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  25. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, Text Res. J. (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  26. W. Ruangudomsakul, C. Ruksakulpiwat, Y. Ruksakulpiwat, Macromol. Symp. (2015). https://doi.org/10.1002/masy.201400096

    Article  Google Scholar 

  27. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  29. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  30. L.M. Proniewicz, C. Paluszkiewicz, A. Wesełucha-Birczyńska, H. Majcherczyk, A. Barański, A. Konieczna, J. Mol. Struct. (2001). https://doi.org/10.1016/S0022-2860(01)00706-2

    Article  Google Scholar 

  31. F. Carrillo, X. Colom, J.J. Sunol, J. Saurina, Eur. Polym. J. (2004). https://doi.org/10.1016/j.eurpolymj.2004.05.003

    Article  Google Scholar 

  32. B. Soni, B. Mahmoud, Carbohydr. Polym. (2015). https://doi.org/10.1016/j.carbpol.2015.08.031

    Article  Google Scholar 

  33. J. Xie, C.Y. Hse, F. Cornelis, T. Hu, J. Qi, T.F. Shupe, Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.06.011

    Article  Google Scholar 

  34. T. Theivasanthi, F.A. Christma, A.J. Toyin, S.C. Gopinath, R. Ravichandran, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.054

    Article  Google Scholar 

  35. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. (2007). https://doi.org/10.1002/adma.200602377

    Article  Google Scholar 

  36. A.R.A. Scharnberg, A.C. de Loreto, A.K. Alves, Emerg. Sci. J. (2020). https://doi.org/10.28991/esj-2020-01205

    Article  Google Scholar 

  37. P.A. Sreekumar, J.M. Saiter, K. Joseph, G. Unnikrishnan, S. Thomas, Compos. Part A: Appl. Sci. Manuf. (2012). https://doi.org/10.1016/j.compositesa.2011.11.018

    Article  Google Scholar 

  38. G. George, K. Joseph, E.R. Nagarajan, E.T. Jose, K.C. George, Compos. Part A: Appl. Sci. Manuf. (2013). https://doi.org/10.1016/j.compositesa.2012.11.009

    Article  Google Scholar 

  39. G. Nyström, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Nano Lett. (2009). https://doi.org/10.1021/nl901852h

    Article  Google Scholar 

  40. S. Ummartyotin, H. Manuspiya, Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.08.050

    Article  Google Scholar 

  41. E.M. Godzhaev, A.M. Magerramov, S.S. Osmanova, M.A. Nuriev, E.A. Allakhyarov, Surf. Eng. Appl. Elect. (2007). https://doi.org/10.3103/S1068375507020160

    Article  Google Scholar 

  42. J. Tao, S.A. Cao, W. Liu, Y. Deng, Cellulose (2019). https://doi.org/10.1007/s10570-019-02495-w

    Article  Google Scholar 

  43. A.N. Patil, M.G. Patil, K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, Bull. Mater. Sci. (2000). https://doi.org/10.1007/bf02708397

    Article  Google Scholar 

  44. A. Dhahri, E. Dhahri, E.K. Hlil, RSC Adv. (2018). https://doi.org/10.1039/c8ra00037a

    Article  Google Scholar 

  45. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. (1955). https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  46. S.B. Aziz, O.G. Abdullah, S.R. Saeed, H.M. Ahmed, Int. J. Electrochem. Sci. (2018). https://doi.org/10.20964/2018.04.10

    Article  Google Scholar 

  47. M.B. Hossen, A.A. Hossain, J. Adv. Ceram. (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  Google Scholar 

  48. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources (2001). https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  Google Scholar 

  49. J.A. Hernández-Flores, A.B. Morales-Cepeda, C.F. Castro-Guerrero, F. Delgado-Arroyo, M.R. Díaz-Guillén, J. de la Cruz-Soto, L. Magallón-Cacho, U. León-Silva, Int. J. Polym. Sci. (2020). https://doi.org/10.1155/2020/1891064

    Article  Google Scholar 

  50. S. Araya, S. Andreasen, S. Kær, Energies (2012). https://doi.org/10.3390/en5114251

    Article  Google Scholar 

  51. P.R. Rejikumar, P.V. Jyothy, S. Mathew, V. Thomas, N.V. Unnikrishnan, Phys. B Condens. Matter. (2010). https://doi.org/10.1016/j.physb.2009.12.031

    Article  Google Scholar 

  52. A.I. Zia, A.M. Syaifudin, S.C. Mukhopadhyay, P.L. Yu, I.H. Al-Bahadly, C.P. Gooneratne, J. Kosel, T.S. Liao, J. Phys. Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/439/1/012026

    Article  Google Scholar 

  53. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  Google Scholar 

  54. B. Andres, C. Dahlström, N. Blomquist, M. Norgren, H. Olin, Mater. Des (2018). https://doi.org/10.1016/j.matdes.2017.12.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to Dr. Rakhi R.B. (Department of Physics, University of Kerala, India) for fitting the experimental data of the Nyquist plot using suitable software. The authors are thankful to the Department of Bio-Technology DBT STAR scheme (BT/HRD/11/053/2019), Science Engineering Research Board (SERB, EMR/2017/000178, Government of India), Department of Science and Technology (DST), Kerala State Council for Science Technology and Environment (KSCSTE) (SPYTIS Project, SAARD 607/2015/KSCSTE), Government of Kerala (SR/FIST/college 202/2014), for financial assistance in the form of research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoy Thomas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, J., Thomas, V., John, J. et al. Effect of temperature and frequency on the dielectric properties of cellulose nanofibers from cotton. J Mater Sci: Mater Electron 32, 21213–21224 (2021). https://doi.org/10.1007/s10854-021-06624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06624-9

Navigation