Skip to main content
Log in

Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein we report the preparation and characterization of conductive cotton fabric prepared by drop casting the material with a composite of carbon black and polyaniline (an organic conductive polymer). A polar solvent, dimethylsulfoxide, was added to the composite to enhance its conductivity. The composite carbon black/polyaniline was coated on the surface of the fibers of the cotton fabric through a conventional “dip and dry” method. Fourier transform infrared spectroscopy, scanning and transmission electron microscopy were employed to characterize the complexes of carbon black/polyaniline and cotton fabric. The sheet resistance of the original cotton fabric was 3.57 × 1012 Ω/sq, but after coating with a composite of carbon black and polyaniline, the sheet resistance decreased to approximately 500 Ω/sq. Moreover, the resistance of cotton conducting fabric as a function of temperature was investigated from 298 to 573°K. The conductive cotton fabric was found to exhibit different behaviors including a metal–semiconductor transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alhashmi Alamer F (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273

    Article  CAS  Google Scholar 

  • Al-Saleh M, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

  • Altinok AS, Ücgul İ, Öksuz AU (2014) Production of polyester/polyaniline, cotton/polyaniline composite fabrics and examing electrical characteristic. TEKSTİL ve KONFEKSİYON 24:1

    Google Scholar 

  • Austad A, Nayan N, Razak S (2017) Conductive kenaf/polyaniline sheets for electrostatic dissipatiom and electromagnatic interferance shielding packaging. Cellul Chem Technol 51:83–89

    CAS  Google Scholar 

  • Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J (2016) Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16(4):498

    Article  Google Scholar 

  • Battista E, Lettera V, Villani M, Calestani D, Gentile F, Netti P (2017) Enzymatic sensing with laccase-functionalized textile organic biosensors. Org Electron 40:51–57

    Article  CAS  Google Scholar 

  • Bhavsar V, Tripathi D (2017) Study of attenuation of microwaves by PPy-doped PVC films. Polym Eng Sci 57:89–94

    Article  CAS  Google Scholar 

  • Bowman D, Mattes B (2005) Conductive fiber prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32

    Article  CAS  Google Scholar 

  • Cai X, Zhang C, Zhang S, Fang Y, Zou DJ (2017) Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. Mater Chem A 5:2444

    Article  CAS  Google Scholar 

  • Caldara M, Colleoni C, Guido E, Re V, Rosace G (2012) Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with methyl red. Sens Actuat B 171:1013–1021

    Article  Google Scholar 

  • Cao Y, Kovalev AE, Xiao R, Kim J, Mayer TS, Mallouk TE (2008) Electrical transport and chemical sensing properties of individual conducting polymer nanowires. Nano Lett 8(12):4653–4658

    Article  CAS  Google Scholar 

  • Cherenack K, Pieterson L (2012) Smart textiles: challenges and opportunities. J Appl Phys 112:091301

    Article  Google Scholar 

  • Chizari K, Arjmandb M, Liu Z, Sundararaj U, Therriault D (2017) Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun 11:112–118

    Article  CAS  Google Scholar 

  • Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuat B 138:318–325

    Article  CAS  Google Scholar 

  • Du X, Xiao M, Meng Y (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40:1489–1493

    Article  CAS  Google Scholar 

  • Feng W, Bai X, Lian Y, Liang J, Wang X, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in situ aniline polymerization. Carbon 41:1551–1557

    Article  CAS  Google Scholar 

  • Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganas O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577

    Article  CAS  Google Scholar 

  • Jalili R, Razal J, Innis P, Wallace G (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. J Appl Polym Sci 21:3363–3370

    CAS  Google Scholar 

  • Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphogical of PP and PET conductive polymer fibers. Synth Met 146:167–174

    Article  CAS  Google Scholar 

  • Kim B, Koncar V, Dufour C (2006) Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. J Appl Polym 101:1252–1256

    Article  CAS  Google Scholar 

  • Krishnanand K, Thite A, Mukhopadhyay A (2017) Electro-conductive cotton fabric prepared by electron beam induced graft polymerization and electro less deposition technology. J Appl Polym Sci. https://doi.org/10.1002/app.44576

    Google Scholar 

  • Little BK, Li Y, Cammarata V, Broughton R, Mills G (2011) Metallization of Kevlar fibers with gold. ACS Appl Mater Interfaces 3:1965–1973

    Article  CAS  Google Scholar 

  • Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972

    Article  CAS  Google Scholar 

  • Meoli D, Plumlee T (2002) Interactive electronic textile development. Text Apparel 2:2

    Google Scholar 

  • Negru D, Buda C, Avram D (2012) Electrical conductivity of woven fabrics coated with carbon black particles. Fibres Text East Eur J 20:53–56

    CAS  Google Scholar 

  • O’Connor B, Pipe K, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92:193306

    Article  Google Scholar 

  • Onar N, Aksit A, Ebeoglugil M, Birlik I, Celik E, Ozdemir I (2009) Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J Appl Polym Sci 114:2003–2010

    Article  CAS  Google Scholar 

  • Otley M, Alhashmi Alamer F, Guo Y, Santana J, Eren E, Li M, Lombardi J, Sotzing G (2016) Phase segregation of PEDOT:PSS on textile to produce materials of > 10 A mm−2 current carrying capacity. Macromol Mater Eng 302:1600348

    Article  Google Scholar 

  • Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970

    Article  CAS  Google Scholar 

  • Sarkar K, Das D, Chaki T, Chattopadhyay S (2017) Macro-structured carbon clusters for developing waterproof, breathable conductive cotton fabric. Carbon 116:1–14

    Article  CAS  Google Scholar 

  • Semaltianos NG, Koidis C, Pitsalidis C, Karagiannidis P, Logothetidis S, Perrie W, Liu D, Edwardson SP, Fearon E, Potter RJ, Dearden G, Atkins KG (2011) Picosecond laser patterning of PEDOT: PSS thin films. Synth Met 161:431–439

    Article  CAS  Google Scholar 

  • Skrifvars M, Soroudi A (2008) Melt spinning of carbon nanotube modified polypropylene for electrically conducting nanocomposite fibers. Solid State Phenom 151:43–47

    Article  Google Scholar 

  • Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactiveink-jet printing technique. Synth Met 202:49–62

    Article  CAS  Google Scholar 

  • Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992

    Article  CAS  Google Scholar 

  • Tang X, Tian M, Qu L, Zhu S, Guo X, Han G, Sun K, Hu X, Wang Y, Xu X (2015) Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth Met 202:82–88

    Article  CAS  Google Scholar 

  • Woltornist S, Alhashmi Alamer F, McDannald A, Jain M, Sotzing G, Adamson D (2015) Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon 81:38–42

    Article  CAS  Google Scholar 

  • Wu K, Ting T, Wang G, Ho W, Shih C (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 93:483–488

    Article  CAS  Google Scholar 

  • Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472

    Article  CAS  Google Scholar 

  • Yetisen A, Qu H, Manbachi A, Butt H, Dokmeci M, Hinestroza J, Skorobogatiy M, Khademhosseini A, Yu S (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068

    Article  CAS  Google Scholar 

  • Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Umm AL-Qura University for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Alhashmi Alamer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamer, F.A. Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25, 2075–2082 (2018). https://doi.org/10.1007/s10570-018-1667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1667-9

Keywords

Navigation