Skip to main content
Log in

Long-term electrically stable silver nanowire composite transparent electrode under high current density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanowire (AgNW) network has been employed into many electronic devices as transparent electrode. However, the poor electrical stability under current shock has been seriously holding its practical application, and we still lack a long-term electrically stable AgNW system to study the underlying fundamentals of electrical failure. In this work, the electrical stability performance and failure mechanism of chitosan–ascorbic acid (Chi-AsA)/AgNW composite under current stress were thoroughly studied. The composite electrode maintained stable above 24,000 h under high current density of 100 mA cm−1. The main failure in AgNW composite is found to be a wave break perpendicular to the current instead of traditional uniform degradation across the entire AgNW networks. More interestingly, the AgNWs in failed composite electrode maintained their original smooth morphology excepting the crack region, while the AgNWs in pristine networks degraded to nanoparticles or became disconnected everywhere. The patterned AgNW composite in microscale exhibits long lifetime in resisting current stress as well. The effect of over-coating location, electrical stress, temperature, and over-coating materials on the electrical stability were studied. The over-coating layer of Chi-AsA is proven to suppress the silver atoms from electromigration, reduce the concentrated Joule heating at junctions, and inhibit the corrosion. The Chi-AsA/AgNW composite enables electrically stable transparent conductor for long-serving optoelectronics, and the mechanism investigation deepens the comprehension of preparing electrically stable AgNW system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26, 6670–6687 (2014)

    Article  CAS  Google Scholar 

  2. N. Ye, J. Yan, S. Xie, Y. Kong, T. Liang, H. Chen, M. Xu, Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells. Nanotechnology 28, 305402 (2017)

    Article  CAS  Google Scholar 

  3. T.H. Seo, S. Lee, K.H. Min, S. Chandramohan, A.H. Park, G.H. Lee, M. Park, E.K. Suh, M.J. Kim, The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes. Sci. Rep. 6, 29464 (2016)

    Article  CAS  Google Scholar 

  4. R. Gupta, K.D. Rao, S. Kiruthika, G.U. Kulkarni, Visibly transparent heaters. ACS Appl. Mater. Interfaces 8, 12559–12575 (2016)

    Article  CAS  Google Scholar 

  5. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4, 6408–6414 (2012)

    Article  CAS  Google Scholar 

  6. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)

    Article  CAS  Google Scholar 

  7. D. Li, X. Liu, X. Chen, W.Y. Lai, W. Huang, A simple strategy towards highly conductive silver-nanowire inks for screen-printed flexible transparent conductive films and wearable energy-storage devices. Adv. Mater. Technol. 4, 1900196 (2019)

    Article  CAS  Google Scholar 

  8. X. Liang, T. Zhao, W. Jiang, X. Yu, Y. Hu, P. Zhu, H. Zheng, R. Sun, C.-P. Wong, Highly transparent triboelectric nanogenerator utilizing in-situ chemically welded silver nanowire network as electrode for mechanical energy harvesting and body motion monitoring. Nano Energy 59, 508–516 (2019)

    Article  CAS  Google Scholar 

  9. H.H. Khaligh, I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8, 235 (2013)

    Article  Google Scholar 

  10. D. Chen, F. Zhao, K. Tong, G. Saldanha, C. Liu, Q. Pei, Mitigation of electrical failure of silver nanowires under current flow and the application for long lifetime organic light-emitting diodes. Adv. Electron. Mater. 2, 1600167 (2016)

    Article  CAS  Google Scholar 

  11. X. Zhang, X. Yan, J. Chen, J. Zhao, Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 69, 437–643 (2014)

    Article  CAS  Google Scholar 

  12. N. Kwon, K. Kim, J. Heo, I. Yi, I. Chung, Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters. Nanotechnology 25, 265702 (2014)

    Article  CAS  Google Scholar 

  13. S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 10, 4951–4960 (2014)

    Article  CAS  Google Scholar 

  14. Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang, Y. Xu, F. Xiao, Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 11, 1998–2011 (2018)

    Article  CAS  Google Scholar 

  15. Y. Ahn, Y. Jeong, Y. Lee, Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces 4, 6410–6414 (2012)

    Article  CAS  Google Scholar 

  16. D. Lee, H. Lee, Y. Ahn, Y. Jeong, D.Y. Lee, Y. Lee, Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5, 7750–7755 (2013)

    Article  CAS  Google Scholar 

  17. B.T. Camic, F. Oytun, M.H. Aslan, H.J. Shin, H. Choi, F. Basarir, Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices. J Colloid Interface Sci. 505, 79–86 (2017)

    Article  CAS  Google Scholar 

  18. X. Zhang, J. Wu, H. Liu, J. Wang, X. Zhao, Z. Xie, Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-assisted silver nanowire transparent electrode. Org Electron. 50, 255–263 (2017)

    Article  CAS  Google Scholar 

  19. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. Small 8, 1590–1600 (2014)

    CAS  Google Scholar 

  20. H. Dong, Z. Wu, Y. Jiang, W. Liu, X. Li, B. Jiao, W. Abbas, X. Hou, A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 8, 31212–31221 (2016)

    Article  CAS  Google Scholar 

  21. T. Sannicolo, N. Charvin, L. Flandin, S. Kraus, D.T. Papanastasiou, C. Celle, J.P. Simonato, D. Muñoz-Rojas, C. Jiménez, D. Bellet, Electrical mapping of silver nanowire networks: a versatile tool for imaging network homogeneity and degradation dynamics during failure. ACS Nano 12, 4648–4659 (2018)

    Article  CAS  Google Scholar 

  22. D. Fantanas, A. Brunton, S.J. Henley, R.A. Dorey, Investigation of the mechanism for current induced network failure for spray deposited silver nanowires. Nanotechnology 29, 465705 (2018)

    Article  CAS  Google Scholar 

  23. A. Kumar, N.S. Vidhyadhiraja, G.U. Kulkarni, Current distribution in conducting nanowire networks. J. Appl. Phys. 122, 045101 (2017)

    Article  CAS  Google Scholar 

  24. G. Deignanab, I.A. Goldthorpe, The dependence of silver nanowire stability on network composition and processing parameters. RSC Adv. 7, 35590–35597 (2017)

    Article  Google Scholar 

  25. J.L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, M.J. Yacaman, Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem. Mater. 17, 6042–6052 (2005)

    Article  CAS  Google Scholar 

  26. B.T. Liu, S.X. Huang, Transparent conductive silver nanowire electrodes with high resistance to oxidation and thermal shock. RSC Adv. 4, 59226–59232 (2014)

    Article  CAS  Google Scholar 

  27. I.K. Moon, J.I. Kim, H. Lee, K. Hur, W.C. Kim, H. Lee, 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3, 1112 (2013)

    Article  CAS  Google Scholar 

  28. H. Chen, M. Li, X. Wen, Y. Yang, D. He, W.C.H. Choy, H. Lu, Enhanced silver nanowire composite window electrode protected by large size graphene oxide sheets for perovskite solar cells. Nanomaterials 9, 193 (2019)

    Article  CAS  Google Scholar 

  29. H.H. Khaligh, L. Xu, A. Khosropour, A. Madeira, M. Romano, C. Pradére, M. Tréguer-Delapierre, L. Servant, M.A. Pope, I.A. Goldthorpe, The Joule heating problem in silver nanowire transparent electrodes. Nanotechnology 28, 425703 (2017)

    Article  CAS  Google Scholar 

  30. A.S. Alshammari, Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Mater. Res. Bull. 111, 245–250 (2019)

    Article  CAS  Google Scholar 

  31. J.C. Goak, T.Y. Kim, D.U. Kim, K.S. Chang, C.S. Lee, N. Lee, Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 510, 145445 (2020)

    Article  CAS  Google Scholar 

  32. Y. Cai, X. Piao, X. Yao, W. Gao, E. Nie, Z. Zhang, Z. Sun, Transparent conductive film based on silver nanowires and single-wall carbon nanotubes for transparent heating films. Nanotechnology 30, 225201 (2019)

    Article  CAS  Google Scholar 

  33. S. Chen, L. Song, Z. Tao, X. Shao, Y. Huang, Q. Cui, X. Guo, Neutral-pH PEDOT:PSS as over-coating layer for stable silver nanowire flexible transparent conductive films. Org Electron 15, 3654–3659 (2014)

    Article  CAS  Google Scholar 

  34. J.S. Woo, J.T. Han, S. Jung, J.I. Jang, H.Y. Kim, H.J. Jeong, S.Y. Jeong, K.J. Baeg, G.W. Lee, Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Sci. Rep. 4, 4804 (2014)

    Article  Google Scholar 

  35. S.J. Lee, J.-W. Kim, J.H. Park, Y. Porte, J.-H. Kim, J.-W. Park, S. Kim, J.-M. Myoung, SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. J. Mater. Sci. 53, 12284–12294 (2018)

    Article  CAS  Google Scholar 

  36. Y. Zhu, T. Wan, P. Guan, Y. Wang, T. Wu, Z. Han, G. Tang, D. Chu, Improving thermal and electrical stability of silver nanowire network electrodes through integrating graphene oxide intermediate layers. J. Colloid Interface Sci. 566, 375–382 (2020)

    Article  CAS  Google Scholar 

  37. V.H. Nguyen, J. Resende, D.T. Papanastasiou, N. Fontanals, C. Jiménez, D. Muñoz-Rojas, D. Bellet, Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale 11, 12097–12107 (2019)

    Article  CAS  Google Scholar 

  38. H. Yu, N. Jin, Z. Wang, J. Lin, J. Wei, Q. Luo, C.Q. Ma, Use of solution-processed zinc oxide to prevent the breakdown in silver nanowire networks. Nanotechnology 31, 18LT01 (2020)

    Article  CAS  Google Scholar 

  39. A. Khan, V.H. Nguyen, D. Muñoz-Rojas, S. Aghazadehchors, C. Jiménez, N.D. Nguyen, D. Bellet, Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 10, 19208–19217 (2018)

    Article  CAS  Google Scholar 

  40. M. Lagrange, T. Sannicolo, D. Muñoz-Rojas, B.G. Lohan, A. Khan, M. Anikin, C. Jiménez, F. Bruckert, Y. Bréchet, D. Bellet, Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement. Nanotechnology 28, 055709 (2017)

    Article  CAS  Google Scholar 

  41. C. Mayousse, C. Celle, A. Fraczkiewicz, J.P. Simonato, Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 7, 2107–2115 (2015)

    Article  CAS  Google Scholar 

  42. H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, W.C.H. Choy, Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Adv. Funct. Mater. 25, 4211–4218 (2015)

    Article  CAS  Google Scholar 

  43. S.J. Choi, S.J. Kim, J.S. Jang, J.H. Lee, I.D. Kim, Silver nanowire embedded colorless polyimide heater for wearable chemical sensors: improved reversible reaction kinetics of optically reduced graphene oxide. Small 12, 5826–5835 (2016)

    Article  CAS  Google Scholar 

  44. K. Wang, Y. Jin, X. Wang, B. Qian, J. Wang, F. Xiao, Investigation into the failure mechanism of silver nanowire network film under electrical stress, in 2020 IEEE 70th electronic components and technology conference (ECTC). (IEEE, Orlando, 2020)

    Google Scholar 

  45. K.W. Cheuk, K. Pei, P.K.L. Chan, Degradation mechanism of a junction-free transparent silver network electrode. RSC Adv. 6, 73769–73775 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by National Natural Science Foundation of China under Grant 51603043.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxia Jin or Fei Xiao.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Jin, Y. & Xiao, F. Long-term electrically stable silver nanowire composite transparent electrode under high current density. J Mater Sci: Mater Electron 32, 20919–20935 (2021). https://doi.org/10.1007/s10854-021-06386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06386-4

Navigation