Skip to main content
Log in

Effect of Au ions on structural, optical, magnetic, dielectric, and antibacterial properties of TiO2 dip-coated thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Physical properties of the TiO2 and Au-doped TiO2 films fabricated by sol–gel dip-coating route are investigated. The diffraction peaks of XRD spectra confirmed the formation of anatase phase. Crystallite size was found to be decreased by increasing dopant concentration from 12.02 to 10.10 nm. All the thin films annealed in air exhibit significant room-temperature ferromagnetism displaying anatase phase that can be employed in spintronic devices. The saturation magnetization increases from 6.8 to 10.35 emu/cm3 with the increase in Au concentration. The coercivity values vary between 360.82 and 478.515 Oe and remnant magnetization ranges between 0.46 and 0.71 emu/cm3. Dielectric parameters obeyed Maxwell-Wagner model and Koop’s theory and were explained by hopping mechanism. Small values of dielectric constant made them favorable for high-frequency devices. The band gaps of the undoped and Au-doped TiO2 thin films is in the range 3.5 to 3.38 eV, which are lesser than those of reported pure TiO2 (3.7 eV) that is favorable for enhancing solar cells efficiency. Au-doped TiO2 leads to an optimum antimicrobial agent. The photocatalysts having 5 wt% Au exhibit the highest photoactivities. The degradation of methylene blue under sunlight made them promising materials for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H.H. Kung, Transition Metal Oxides, 1st edn. (Elsevier, Amsterdam, 1989), p. 45

    Google Scholar 

  2. S. Noothongkaew, J.K. Han, Y.B. Lee, O. Thumthan, K.-S. An, Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog. Nat. Sci. Mater. Int. 27, 641–646 (2017)

    Article  CAS  Google Scholar 

  3. G. An, S. Jin, C. Yang, Y. Zhou, X. Zhao, Photoluminescence enhancement and quenching of Sm, Au Co-doped TiO2. Opt. Mater. 35, 45–49 (2012)

    Article  CAS  Google Scholar 

  4. V.H. Grassian, P.T. O’Shaughnessy, A. Adamcakova-Dodd, J.M. Pettibone, P.S. Thomas, Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115, 397–402 (2007)

    Article  CAS  Google Scholar 

  5. T. Thirugnanasambandan, M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight, Chem. Phys. 1090–1307 (2013)

  6. Z.N. Kayani, S. Maria, S. Riaz, S. Naseem, Magnetic and antibacterial studies of sol–gel dip coated Ce doped TiO2 thin films: influence of Ce contents. Ceram. Int. 4, 381–390 (2020)

    Article  Google Scholar 

  7. Y. Yang, J. Li, TiO2: a critical interfacial material for incorporating photosynthetic protein complexes and plasmonic nanoparticles into biophotovoltaics. In Application of Titanium Dioxide (Intech Open, London, 2017), pp. 205–207

  8. S. Higashimoto, Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications. Catalysts 9, 64–65 (2019)

    Article  Google Scholar 

  9. F. Huang, A. Yan, H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst. In Semiconductor Photocatalysis—Materials, Mechanisms and Applications, 1st edn. (Intech Open,  London, 2016), pp. 31–80

  10. A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: titanium dioxide applications. Energy Procedia 157, 17–29 (2019)

    Article  CAS  Google Scholar 

  11. M. Trivedi, J. Murase, Titanium dioxide in sunscreen. In Application of Titanium Dioxide, 1st edn, vol. 14 (Intech Open, London, 2017), pp. 61–71

  12. M.H. Ropers, H. Terrisse, M.M. Bonin, B. Humbert, Titanium dioxide as food additive . In Application of Titanium Dioxide, 1st edn (Intech Open, London, 2017), pp. 1–22

  13. X. Yan, X. Chen, Titanium dioxide nanomaterials. J. Phys. D 19, 193000–193003 (2017)

    Google Scholar 

  14. C.C. Yang, Y.-J. Sun, P.H. Chung, W.Y. Chen, W. Swieszkowski, W. Tian, F.-H. Lin, Development of Ce-doped TiO2 activated by X-ray irradiation for alternative cancer treatment. Ceram. Int. 43, 12675–12683 (2017)

    Article  CAS  Google Scholar 

  15. G. Raja, S. Cao, D.-H. Kim, T.-J. Kim, Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater. Sci. Eng. 107, 110100–110303 (2020)

    Article  Google Scholar 

  16. W. Xu, M. Qi, X. Li, X. Liu, L. Wang, W. Yu, M. Liu, L.A.Y. Zhou, Y. Song, TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J. Electroanal. Chem. 842, 66–73 (2019)

    Article  CAS  Google Scholar 

  17. Q. Xiao, Z. Si, Z. Yu, G. Qiu, Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. 13, 189–194 (2007)

    Article  Google Scholar 

  18. Y. Yu, F. Yang, S. Mao, S. Zhu, Y. Jia, L. Yuan, M. Salmen, B. Sun, Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem. Phys. Lett. 706, 477–482 (2018)

    Article  CAS  Google Scholar 

  19. P. Han, B. Sun, S. Cheng, F. Yu, B. Jiao, Q. Wu, Preparation of MoSenano-islands array embedded in a TiO2 matrix for photo-regulated resistive switching memory. J. Alloys Compd. 664, 619–625 (2016)

    Article  CAS  Google Scholar 

  20. V. Subramanian, E.E. Wolf, P.V. Kamat, Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles. Langmuir 19, 469–474 (2003)

    Article  CAS  Google Scholar 

  21. P. Kumar,  A study on the role of metal oxides and their transition. Int. J. Chem. Stud. 4, 138–140 (2016)

    Google Scholar 

  22. K.M. Rahulan, S. Ganesan, P. Aruna, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 025012 (2011)

    Article  Google Scholar 

  23. M. Post, C. Cantalini, P. Mulvaney, A. Martucci, Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv. Funct. Mater. 18, 3843–3849 (2008)

    Article  Google Scholar 

  24. S.H. Nam, H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2, 2046–2052 (2010)

    Article  CAS  Google Scholar 

  25. S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2-δ films. J. Phys. Condens. Matter 18(27), L355 (2006)

    Article  CAS  Google Scholar 

  26. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, F. Berger, H. Berger, F. Lévy, High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635 (1994)

    Article  CAS  Google Scholar 

  27. G. Fu, P.S. Vary, C.-T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109, 8889–8898 (2005)

    Article  CAS  Google Scholar 

  28. R.S. Sonawane, M.K. Dongare, Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A 243(1), 68–76 (2006)

    Article  CAS  Google Scholar 

  29. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U.L. Stangar, M. Bergant, D. Mahne, Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18, 375709 (2007)

    Article  Google Scholar 

  30. H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.-G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)

    Article  CAS  Google Scholar 

  31. Z. Zhou, H. Wang, Z. Yang, Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation. J. Phys. Chem. Solids 10, 71–77 (2017)

    Article  Google Scholar 

  32. S. Mukherjee, M. Choudhuri, A. Datta, K. Koshmak, S. Nannarone, A.K. Mukhopadhyay, Gold nanoparticle patterning on titanium dioxide thin films by hydrophilic and hydrophobic interactions effect on band gap. Mater. Eng. Nanotechnol. 43, 1–5 (2017)

    Google Scholar 

  33. Z.N. Kayani, S. Maria, S. Riaz, S. Naseem, Magnetic and antibacterial studies of sol–gel dip coated Ce doped TiO2 thin films: influence of Ce contents. Ceram. Int. 46, 381–390 (2019)

    Article  Google Scholar 

  34. J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512 (1938)

    Article  CAS  Google Scholar 

  35. T. Thirugnanasambandan, M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight, Chem. Phys. 27, 1090–1356  (arXiv preprint, 2017)

  36. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, 1978).

    Google Scholar 

  37. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, vol. 2 (Wiley, New York, 1975), pp. 445–446

    Google Scholar 

  38. A.R. Stokes, A.J.C. Wilson, The diffraction of X rays by distorted crystal aggregates—I. Proc. Phys. Soc. 56, 174–181 (1944)

    Article  CAS  Google Scholar 

  39. L. Borgese, M. Gelfi, E. Bontempi, P. Goudeau, G. Geandier, D. Thiaudière, L.E. Depero, Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition. Surf. Coat. Technol. 206, 2459–2463 (2012)

    Article  CAS  Google Scholar 

  40. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo, The AFLOW Library of crystallographic prototypes: Part 1. Comput. Mater. Sci. 136, S1–S828 (2017)

    Article  CAS  Google Scholar 

  41. J. Treacy, H. Hussain, X. Torrelles, D. Grinter, G. Cabailh, O. Bikondoa, C. Nicklin, S. Selcuk, A. Selloni, R. Lindsay, G. Thornton, Geometric structure of anatase TiO2(101). Phys. Rev. B 95, 075416–075417 (2017)

    Article  Google Scholar 

  42. R.A. Dunlap, The symmetry and packing fraction of the body centered tetragonal structure. Eur. J. Phys. Educ. 3, 17–24 (2017)

    Google Scholar 

  43. Z.N. Kayani, S. Rahim, R. Sagheer, S. Riaz, S. Naseem, Assessment of antibacterial and optical features of sol–gel dip coated La doped TiO2 thin films. Mater. Chem. Phys. 250, 1–7 (2020)

    Article  Google Scholar 

  44. T.S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959), pp. 234–244

    Google Scholar 

  45. J.I. Pankove, Optical Processes in Semiconductors, Vol. 92 (Dover, New York, 1971), pp. 66–77

    Google Scholar 

  46. M.A. Omar, Elementary Solid State Physics (Addison-Wesley Publishing Company, Boston, 1987), pp. 344–345

    Google Scholar 

  47. H. Nazli, R. Anjum, F. Iqbal, A. Awan, S. Riaz, Z.N. Kayani, S. Naseem, Magneto-dielectric properties of in-situ oxidized magnesium–aluminium spinel thin films using electrodeposition. Ceram. Int. 46, 8588–8600 (2020)

    Article  CAS  Google Scholar 

  48. M. Ziese, M.J. Thornton, Spin Electronics (Springer, New York, 2001), pp. 400–405

    Book  Google Scholar 

  49. W. Reitz, A review of: “Impedance Spectroscopy, Theory, Experiment, and Applications.” Mater. Manuf. Process. 21, 424–425 (2006)

    Article  Google Scholar 

  50. A. Hassan, M. Azhar Khan, M. Shahid, M. Asghar, I. Shakir, S. Naseem, S. Riaz, M. Farooq Warsi, Nanocrystalline Zn1 – xCo0.5xNi0.5xFe2O4 ferrites: fabrication via co-precipitation route with enhanced magnetic and electrical properties. J. Magn. Magn. Mater. 393, 56–61 (2015)

    Article  CAS  Google Scholar 

  51. B. Behera, P. Nayak, R.N. Choudhary, Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 43, 401–410 (2008)

    Article  CAS  Google Scholar 

  52. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–674 (1977)

    Article  CAS  Google Scholar 

  53. Z.N. Kayani, Z. Bashir, S. Riaz, S. Naseem, Z. Saddiqe, Transparent boron-doped zinc oxide films for antibacterial and magnetic applications. J. Mater. Sci. Mater. Electron. 267, 11911–11926 (2020)

    Article  Google Scholar 

  54. H. Boettger, V.V. Bryksin, Hopping Conduction in Solids (Akademie Verlag, Berlin, 1985), pp. 565–570

    Book  Google Scholar 

  55. Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013)

    Article  CAS  Google Scholar 

  56. A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11, 734–735 (2018)

    Article  Google Scholar 

  57. S. Attia, M. Abdelfatah, M. Mossad, Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver. J. Phys. Conf. Ser. 869, 012035 (2017)

    Article  Google Scholar 

  58. K.A. Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3. Adv. Mater. Res. 2, 119–131 (2013)

    Article  Google Scholar 

  59. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 2, 41–102 (1969)

    Article  Google Scholar 

  60. M. Umar, H.A. Aziz, Organic Pollutants—Monitoring, Risk and Treatment, vol. 8 (InTech Open, London, 2013), pp. 195–208

    Google Scholar 

  61. A. Kadam, R. Dhabbe, D. Shin, J. Park, Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 43, 5164–5172 (2017)

    Article  CAS  Google Scholar 

  62. Z.N. Kayani, A. Kamran, Z. Saddiqe, S. Riaz, S. Naseem, Probe of ZrTiO2 thin films with TiO2–ZrO2 binary oxides deposited by dip coating technique. J. Photochem. Photobiol. B 183, 357–366 (2018)

    Article  CAS  Google Scholar 

  63. Z.N. Kayani, M. Anjum, S. Riaz, S. Naseem, T. Zeeshan, Role of Mn in biological, optical, and magnetic properties ZnO nano-particles. Appl. Phys.  A 126, 197 (2020)

    Article  CAS  Google Scholar 

  64. L. Gnanasekaran, R. Hemamalini, K. Ravichandran, Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J. Saudi Chem. Soc. 19, 589–594 (2015)

    Article  Google Scholar 

  65. G. Murtaza, R. Ahmad, M.S. Rashid, M. Hassan, A. Hussnain, M.A. Khan, M.E. ul Haq, M.A. Shafique, S. Riaz, Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 14, 176–181 (2014)

    Article  Google Scholar 

  66. B. Gao, T.M. Lim, D.P. Subagio, T.-T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A. Appl. Catal. A 375, 107–115 (2010)

    Article  CAS  Google Scholar 

  67. L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, V.K. Gupta, Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J. Mol. Liq. 223, 652–659 (2016)

    Article  CAS  Google Scholar 

  68. O. Pliekhov, O. Pliekhova, Y.O. Donar, A. Sınağ, N.N. Tušar, U.L. Štangar, Enhanced photocatalytic activity of carbon and zirconium modified TiO2. Catal. Today 284, 215–220 (2017)

    Article  CAS  Google Scholar 

  69. C. Belver, J. Bedia, J.J. Rodriguez, Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater. 322, 223–242 (2016)

    Google Scholar 

  70. V. Caratto, F. Locardi, S. Alberti, S. Villa, E. Sanguineti, A. Martinelli, T. Balbi, L. Canesi, M. Ferretti, Different sol–gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. J. Sol–Gel Sci. Technol. 80, 152–159 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Professor Dr. Shahzad Naseem and Dr. Saira Riaz for providing Vibrating Sample Magnetometer and Impedance Analyzer in Centre for Solid State Physics, University of the Punjab, Lahore, Pakistan. Authors also pay their thanks to Professor Dr. Zeb Saddiqe, Department of Botany, Lahore College for Women University in facilitating for antibacterial activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Nazir Kayani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Kayani, Z.N. & Anwar, M. Effect of Au ions on structural, optical, magnetic, dielectric, and antibacterial properties of TiO2 dip-coated thin films. J Mater Sci: Mater Electron 32, 14398–14419 (2021). https://doi.org/10.1007/s10854-021-06001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06001-6

Navigation