Skip to main content
Log in

Transparent boron-doped zinc oxide films for antibacterial and magnetic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

B-doped ZnO thin films have been synthesized by a sol–gel dip-coating deposition technique. Deposition conditions were optimized to achieve highly ordered thin films. XRD patterns confirm that B ions are inserted into the ZnO; lattice and the crystallite size decrease from 25.83 to 20.94 nm as the amount of B increases to optimal value (9 at.wt%). Synthesized B-doped ZnO thin films have ordered hexagonal wurtzite structures and granular morphology with high specific surface area. Optical transmittance spectra display transparency in the visible region. The band gap of the films decreases from 3.89 to 3.04 eV with the increase in B concentration. Band gap lowering is due to increase of defect level with the increase in B dopant percentage. The origin of the ferromagnetism is explained in terms of oxygen vacancies and Zn interstitials. Dielectric constant increases while DC conductivity and AC conductivity decrease with the increase in B doping. Antibacterial activity increases with the increase in B doping percentage but lower than undoped ZnO due to large crystallite size of B-doped ZnO nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Wen, C.Q. Liu, N. Wang, H.-L. Wang, S.-M. Liu, W.-W. Jiang, W.-Y. Ding, W. Fei, W.-P. Chai, Crystallization behavior and properties of B-doped ZnO thin films prepared by sol-gel method with different pyrolysis temperatures. Chin. J. Chem. Phys. 29, 229–233 (2016)

    CAS  Google Scholar 

  2. A. Banejee and G. Guha, Study of back reflectors for amorphous silicon alloy solar cell application, J. Appl. Phys, l 69 (1991)1030–1033.

  3. S. Ilican, F. Yakuphanoglu, M. Caglar, Y. Caglar, The role boron doping on the characteristics of sol gel drived ZnO films. J. Alloys Compd. 509, 5290–5294 (2011)

    CAS  Google Scholar 

  4. S. Kim, H. Yoon, D.Y. Kim, S.-O. Kim, J.-Y. Leem, Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol-gel dip-coating method. J. Opt. Mater. 35, 2418–2424 (2013)

    CAS  Google Scholar 

  5. A.B. Maximilian, D. Pierandrea, L. Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanoparticle Res. 10, 679–689 (2008)

    Google Scholar 

  6. P.-C. Chang, Z. Fan, C.-J. Chien, High-performance ZnO nanowire field effect transistors. J. Appl. Phys. Lett. 89, 217–220 (2006)

    Google Scholar 

  7. T.-H. Moon, M.-C. Jeong, W. Lee, J.-M. Myoung, The fabrication and characterization of ZnO UV detector. J. Appl. Surf. Sci. 240, 280–285 (2005)

    CAS  Google Scholar 

  8. J. Müller, S.W. Benrieder, ZnO-thin film chemical sensors. J. Anal. Bioanal. Chem. 349, 380–384 (1994)

    Google Scholar 

  9. S. Shoaee, J.B. James, R. Durrant, S. Dunn, Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance. J. Appl. Phys. 26, 263–268 (2014)

    CAS  Google Scholar 

  10. X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N.M. Park, ZnO film for application in surface acoustic wave device. J. Phys. Conf. Ser. 76, 1–7 (2007)

    Google Scholar 

  11. F.M. Simanjuntak, D.P. Tsung-Ling, T.C.A. Lin, K.H. Wei, T.-Y. Tseng, Enhancing the memory window of AZO/ZnO/ITO transparent resistive switching devices by modulating the oxygen vacancy concentration of the top electrode. J. Mater. Sci. 50, 6961–6969 (2015)

    CAS  Google Scholar 

  12. E. Hosono, S. Fujihara, T. Kimuraa, Fabrication and electrical properties of micro/nanoporous ZnO∶ Al films. J. Mater. Chem. 5, 881–886 (2004)

    Google Scholar 

  13. Q.Z. Christopher, S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. J. Appl. Phys. 21, 4087–4108 (2009)

    Google Scholar 

  14. V. Kumar, R.G. Singh, F. Singh, L.P. Purohit, Highly transparent and conducting boron doped zinc oxide films for window of dye sensitized Solar Cell applications. J. Alloys Compd. 544, 120–124 (2012)

    CAS  Google Scholar 

  15. K. Das, T. Das, K. Parashar, S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A. Anupama, B. Sahoo, Investigation of structural, morphological and NTCR behavior of Cu-doped ZnO nanoceramics synthesized by high energy ball milling. J. Mater. Chem. Phys. 221, 419–429 (2019)

    CAS  Google Scholar 

  16. J.Y. Liu, X.X. Yu, G.H. Zhang, Y.K. Wu, K. Zhang, N. Pan, X.P. Wang, High performance ultraviolet photodetector fabricated with ZnO nanoparticles-graphene hybrid structures. Chin. J. Chem. Phys. 26, 255–259 (2013)

    Google Scholar 

  17. K.D. Suresh, K. Verma, T. Dasa, P.K. Panda, K. Parashara, M. Suarb, S.K.S. Parashara, Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis. J. Chemico B. Interact. 297, 141–154 (2019)

    Google Scholar 

  18. N.P. Bhagwat, C.D. Gangeri, H. Rajaram, S. Manea, T. Ganesha, A. Ghulea, R.L. Sharmaa, K.D. Jadhavab, S.-H. Hana, Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells. J. Solar Energy Mater. Solar Cells 93, 524–527 (2009)

    Google Scholar 

  19. Q. Yu, L. Li, H. Li, S. Gao, D. Sang, J. Yuan, P. Zhu, Synthesis and properties of boron doped ZnO nanorods on silicon substrate by low-temperature hydrothermal reaction. J. Appl. Surf. Sci. 257, 5984–5988 (2011)

    CAS  Google Scholar 

  20. S. Soo Kima, H. VuLyb, G.H. Choia Jinsoo, K. Chul Woo, Pyrolysis characteristics and kinetics of the alga Saccharina japonica. J. B. Tech. 123, 445–451 (2012)

    Google Scholar 

  21. W.L. Lu, P.K. Hung, C.I. Hung, C.H. Yeh, Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods. J. Mater. Chem. Phys. 130, 619–623 (2011)

    CAS  Google Scholar 

  22. L. Zhu, J. Li, Z. Ye, H. He, X. Chen, B. Zhao, Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. J. Opt. Mater. 31, 237–240 (2008)

    CAS  Google Scholar 

  23. G.P. Hernándeza, A.E. Moralesa, U. Palb, E. Chigo-Anotaa, Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures. J. Chem. Phys. 135, 810–817 (2012)

    Google Scholar 

  24. A.E. Moralesa, M.H. Zaldivarb, U. Pala, Indium doping in nanostructured ZnO through low-temperature hydrothermal process. J. Opt. Mater. 29, 100–104 (2006)

    Google Scholar 

  25. T. Hua, F.S.-H. Kang, Optical and physical characteristics of In-doped ZnO nanorods. J. Appl. Phys. 10, 1076–1086 (2010)

    Google Scholar 

  26. L.X. Yong, S. Yiqing, C.H. Xiao, L. Zhu, Q. Zhou, S. Li, Synthesis and characterization of indium-doped ZnO nanowires with periodical single−twin structures. J. Phys. Chem. B 13, 6637–6642 (2006)

    Google Scholar 

  27. J. Steinhausera, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl. Phys. 90, 1–7 (2007)

    Google Scholar 

  28. S. Jain, T.T. Kodas, M.H. Smith, Synthesis and characterization of indium-doped ZnO nanowires with periodical single−twin structures. J. Phys. Chem. B 13, 6637–6642 (2006)

    Google Scholar 

  29. L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res. 9, 479–489 (2007)

    Google Scholar 

  30. K. Chitra, G. Annadurai, Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Inter Food Res. J. 20(1), 59–64 (2013)

    CAS  Google Scholar 

  31. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. J. Mater. Sci. Mater. Electr. 19, 704–708 (2008)

    CAS  Google Scholar 

  32. S. Ilican, Y. Caglar, F. Yakuphanoglu, Electrical conductivity, Optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method. J. Phys. E 35, 131–138 (2006)

    CAS  Google Scholar 

  33. L.B. Feng, A.H. Liu, M. Liu, Y. Ma, J. Wei, B.Y. Man, Synthesis, characterization and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation. J. Alloys Compd. 492, 427–432 (2010)

    CAS  Google Scholar 

  34. Y.P. Liao, J.H. Zhang, S.X. Li, Z.S. Guo, J. Cao, W.Q. Zhu, X.F. Li, Phy. status solidi, structural evolution of ZnO films deposited by rf magnetron sputtering on glass substrate. J. Appl. Mater. Sci. 207, 1850–1853 (2010)

    CAS  Google Scholar 

  35. S. Ilican, M. Caglar, Y. Caglar, Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films. J. Appl. Surf. Sci. 256, 7204–7210 (2010)

    CAS  Google Scholar 

  36. A. Tumbul, F. Aslan, S. Demirozu, A. Goktas, A. Kilic, M. Durgun, M.Z. Zarbali, Solution processed boron doped ZnO thin films: influence of different boron complexes. Mater. Res. Exp. 6(3), 035903 (2019)

    Google Scholar 

  37. X.D. Liu, E.Y. Jiang, Z.Q. Li, Low temperature electrical transport properties of B-doped ZnO films. J. Appl. Phys. 102, 703–708 (2007)

    Google Scholar 

  38. M.C. SalihaIlicana, Y.C. FahrettinYakuphanoglu, Boron doped nanostructure ZnO Films onto ITO substrate. J. Alloys Compd. 509, 3177–3182 (2011)

    Google Scholar 

  39. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Klasse 2, 98–100 (1918)

    Google Scholar 

  40. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    CAS  Google Scholar 

  41. H.P. Klung, L.E. Alexander, X-ray diffraction procedures: For polycrystalline and amorphous materials, 2nd edn. (Wiley, New York, 1974), p. 992

    Google Scholar 

  42. B.D. Cullity (1978) Elements of X-ray Diffraction, 2 edn, vol. 1956. Addison Wesley, MA, pp. 285–284.

  43. S. Patra, D. Verma, A. Kole, C. Tiwary, D. Kundu, S. Chaudhuri, P. Kumbhakar, Optical, structural properties and antibacterial activities of uncapped and HMT capped ZnO nanoparticles. Mater. Today Commun. 12, 133–145 (2017)

    CAS  Google Scholar 

  44. C.S. Barret, F.B. Massalski, Structure of Metals (Pergamon Press, Oxford, 1980)

    Google Scholar 

  45. L.E. Moore, E.A. Smart, Solid State Chemistry: An Introduction, 3rd edn. (Taylor & Francis, CRC, Boca Raton, FL, 2005)

    Google Scholar 

  46. U.P. Aparna, K.N. Divya, P.P. Pradyumnan, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Mater. Sci. Chem. Eng. 4, 79–88 (2016)

    CAS  Google Scholar 

  47. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971)

    Google Scholar 

  48. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Google Scholar 

  49. L. Eckortova, Physics of Thin Films (Plenum Press, New York, 1977)

    Google Scholar 

  50. B.O. Seraphin, optical Properties of Solid New Developments, Company (Elsevier Publishing, New York, 1976)

    Google Scholar 

  51. N.V. Smith, Photoelectron energy spectra and the band structures of the noble metals. Phys. Rev. 3, 1862 (1971)

    Google Scholar 

  52. J.F. Eloy, Power Lasers, National Sch. Phys. (Wiley, Grenoble, 1984), p. 59

    Google Scholar 

  53. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. J. Arc. 92, 1324 (1953)

    CAS  Google Scholar 

  54. I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  55. S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, Boston, 2006)

    Google Scholar 

  56. W. Fuhs, ZnO window layers for solar cells, in Zinc Oxide—A Material for Micro- and Optoelectronic Applications NATO Science Series II: Mathematics, ed. by N.H. Nickel, E. Terukov (Physics and Chemistry. Springer, Dordrecht, 2005), p. 194

    Google Scholar 

  57. E.A. El-Wahab, M.M.A. El-Aziz, E.R. Sharaf, M.A. Afifi, AC conductivity and dielectric properties of GeSexTl0.3 amorphous thin films. J. Alloys. Compds 509(34), 8595–8600 (2011)

    Google Scholar 

  58. S.R. Elliott, A theory of ac conduction in chalcogenide glasses. Phil. Mag. 36, 1291–1304 (1977)

    CAS  Google Scholar 

  59. N.A. Hegab, M.A. Afifi, H.E. Atyia, M.I. Ismael, AC conductivity and dielectric properties of amorphous Ge15Se60X25 (X¼As or Sn) films. Acta Phys. Pol. A 119, 416–422 (2011)

    CAS  Google Scholar 

  60. F.S.H. Abu-Samaha, M.I.M. Ismail (2014) AC conductivity of nanoparticles Cox-Fe(1−x) Fe2O4 (x = 0, 0.25 and 1) ferrites. Mater. Sci. Semicond. Process. 19: 50–56.

  61. M. Pollak, On the frequency dependence of conductivity in amorphous solids. Philos. Mag. 23, 519–542 (1971)

    CAS  Google Scholar 

  62. W.K. Wagner, Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Arch Elektrotech 2, 371–387 (1914)

    Google Scholar 

  63. T. Prodromakis, C. Papavassiliou, Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 255, 6989–6994 (2009)

    CAS  Google Scholar 

  64. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83, 121–124 (1951)

    CAS  Google Scholar 

  65. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    CAS  Google Scholar 

  66. H. Böttger, U.V. Bryskin, Hoping Conduction in Solids, (Verlag Akademie, Berlin, 1985), pp. 169–21341

    Google Scholar 

  67. Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, AIP Adv. 3, 032146 (2013)

    Google Scholar 

  68. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    CAS  Google Scholar 

  69. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    CAS  Google Scholar 

  70. J. Sinkkonen, K. Kaski, T. Stubb, Bound magnetic polaron in magnetic semiconductors. Phys. Status Solid. B 94(1), 181–190 (1979)

    Google Scholar 

  71. P.A. Wolff, Diluted magnetic semiconductors, in Semiconductors and Semimetal, ed. by J.K. Furdyna, J. Kossut, R.K. Willardson, A.C. Beer (Academic Press, New York, 1988)25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Nazir Kayani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayani, Z.N., Bashir, Z., Riaz, S. et al. Transparent boron-doped zinc oxide films for antibacterial and magnetic applications. J Mater Sci: Mater Electron 31, 11911–11926 (2020). https://doi.org/10.1007/s10854-020-03745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03745-5

Navigation