Skip to main content
Log in

The impact of cation distribution on the structural and magnetic properties of nonstoichiometric Co0.5Ni0.5+xFe2−xO4 nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the impact of nonstoichiometric substitution of Fe3+ cations by Ni2+ ones on the structural and magnetic properties of Co0.5Ni0.5+xFe2−xO4 nanoferrites (0.0 ≤ x ≤ 0.4) synthesized by citric autocombustion method has been investigated. The single cubic phase for samples sintered at 600 °C was verified by XRD patterns and FTIR spectra. The crystallite size and microstrain were deduced using Williamson-Hall method, with the former ranging from 55 to 89 nm, in agreement with the TEM microimaging. Hysteresis loops traced via VSM prevailed a regular reduction of the saturation magnetization with Ni2+ substitution. A cation distribution has been suggested for each sample based on the experimental data of XRD, FTIR, and VSM. The suggested cation distribution successfully explained the recorded data of lattice parameter, crystallite size, IR frequencies, magnetization and coercivity. Besides the experimental data, the cation distribution supports the compensation of the nonstoichiometric substitution by the appearance of higher valance states of Fe, Ni, and Co cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Zhou, Y. Sun, J. Shen, J. Wei, Yu. Chao, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.063

    Article  CAS  Google Scholar 

  2. R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. Biomed. 4, 141–154 (2012). https://doi.org/10.1080/19430892.2012.676918

    Article  CAS  Google Scholar 

  3. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/j.cis.2019.07.003

    Article  CAS  Google Scholar 

  4. J.H. Hankiewicz, J.A. Stoll, J. Stroud, J. Davidson, K.L. Livesey, K. Tvrdy, A. Roshko, S.E. Russek, K. Stupic, P. Bilski, R.E. Camley, Z.J. Celinski, Nano-sized ferrite particles for magnetic resonance imaging thermometry. J. Magn. Magn. Mater. 469, 550–557 (2019). https://doi.org/10.1016/j.jmmm.2018.09.037

    Article  CAS  Google Scholar 

  5. Z.A. Gilani, M.S. Shifa, M.A. Khan, M.N. Anjum, M.N. Usmani, R. Ali, M.F. Warsi, New LiCo0.5PrxFe2−xO4 nanoferrites: prepared via low cost technique for high density storage application. Ceram. Int. 44, 1881–1885 (2018). https://doi.org/10.1016/j.ceramint.2017.10.126

    Article  CAS  Google Scholar 

  6. V. Kashyap, S. Kurungot, Zirconium-substituted cobalt ferrite nanoparticle supported N-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for rechargeable Zn-air battery. ACS Catal. 8, 3715–3726 (2018). https://doi.org/10.1021/acscatal.7b03823

    Article  CAS  Google Scholar 

  7. A. Nigam, S.J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications. Ceram. Int. 46, 4058–4064 (2020). https://doi.org/10.1016/j.ceramint.2019.10.243

    Article  CAS  Google Scholar 

  8. E. Petrova, D. Kotsikau, V. Pankov, A. Fahmi, Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. J. Magn. Magn. Mater. 473, 85–91 (2019). https://doi.org/10.1016/j.jmmm.2018.09.128

    Article  CAS  Google Scholar 

  9. D.R. Mane, S. Patil, D.D. Birajdar, A.B. Kadam, S.E. Shirsath, R.H. Kadam, Sol-gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: cation distribution, structural and magnetic properties. Mater. Chem. Phys. 126, 755–760 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.048

    Article  CAS  Google Scholar 

  10. S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, Chemical synthesis, structural and magnetic properties of nano-structured Co-Zn-Fe-Cr ferrite. J. Alloys Compd. 509, 5055–5060 (2011). https://doi.org/10.1016/j.jallcom.2011.02.006

    Article  CAS  Google Scholar 

  11. M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method. J. Magn. Magn. Mater. 439, 228–235 (2017). https://doi.org/10.1016/j.jmmm.2017.04.015

    Article  CAS  Google Scholar 

  12. Y. Köseoǧlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1-xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009). https://doi.org/10.1016/j.poly.2009.06.061

    Article  CAS  Google Scholar 

  13. A.M. Wahba, M.B. Mohamed, Correlating cation distribution with the structural and magnetic properties of Co0.5Zn0.5AlxFe2–xO4 nanoferrites. Appl. Phys. A 126, 1–11 (2020). https://doi.org/10.1007/s00339-020-03692-2

    Article  CAS  Google Scholar 

  14. M.H. Mahmoud, A.M. Elshahawy, S.A. Makhlouf, H.H. Hamdeh, Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method. J. Magn. Magn. Mater. 369, 55–61 (2014). https://doi.org/10.1016/j.jmmm.2014.06.011

    Article  CAS  Google Scholar 

  15. M.C. Dimri, H. Khanduri, P. Agarwal, J. Pahapill, R. Stern, Structural, magnetic, microwave permittivity and permeability studies of barium monoferrite (BaFe2O4). J. Magn. Magn. Mater. 486, 165278 (2019). https://doi.org/10.1016/j.jmmm.2019.165278

    Article  CAS  Google Scholar 

  16. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 23, 78–86 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.030

    Article  CAS  Google Scholar 

  17. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013). https://doi.org/10.1016/j.jmmm.2012.09.013

    Article  CAS  Google Scholar 

  18. M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 16, 102973 (2020). https://doi.org/10.1016/j.rinp.2020.102973

    Article  Google Scholar 

  19. V. Tukaram, S.S. Shinde, R.B. Borade, A.B. Kadam, Study of cation distribution, structural and electrical properties of Al – Zn substituted Ni – Co ferrite. Phys. B 577, 411783 (2020). https://doi.org/10.1016/j.physb.2019.411783

    Article  CAS  Google Scholar 

  20. F.H. Starsich, G.A. Sotiriou, M.C. Wurnig, C. Eberhardt, A.M. Hirt, A. Boss, S.E. Pratsinis, Pratsinis, silica-coated nonstoichiometric nano Zn-ferrites for magnetic resonance imaging and hyperthermia treatment. Adv. Healthc. Mater. 5, 2698–2706 (2016). https://doi.org/10.1002/adhm.201600725

    Article  CAS  Google Scholar 

  21. H. Yun, J. Kim, T. Paik, L. Meng, P.S. Jo, J.M. Kikkawa, C.R. Kagan, M.G. Allen, C.B. Murray, Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. J. Appl. Phys. 119, 113901 (2016). https://doi.org/10.1063/1.4942865

    Article  CAS  Google Scholar 

  22. A. Sutka, G. Mezinskis, A. Lusis, D. Jakovlevs, Chemical Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties. Sens. Actuators B 171, 204–209 (2012). https://doi.org/10.1016/j.snb.2012.03.012

    Article  CAS  Google Scholar 

  23. E.E. Ateia, A.T. Mohamed, Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method. J. Magn. Magn. Mater. 426, 217–224 (2017). https://doi.org/10.1016/j.jmmm.2016.11.053

    Article  CAS  Google Scholar 

  24. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017). https://doi.org/10.1016/j.jpcs.2017.04.004

    Article  CAS  Google Scholar 

  25. Ru. Li Sun, Z.W. Zhang, Ju. Lin, E. Cao, Y. Zhang, Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol–gel auto-combustion method. J. Magn. Magn. Mater. 421, 65–70 (2017). https://doi.org/10.1016/j.jmmm.2016.08.003

    Article  CAS  Google Scholar 

  26. S. Moosavi, S. Zakaria, C.H. Chia, S. Gan, N.A. Azahari, H. Kaco, Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceram. Int. 43, 7889–7894 (2017). https://doi.org/10.1016/j.ceramint.2017.03.110

    Article  CAS  Google Scholar 

  27. G.P.D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, D.F.A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter. 23, 1–8 (2011). https://doi.org/10.1088/0953-8984/23/42/426004

    Article  CAS  Google Scholar 

  28. A.M. Wahba, M. Bakr Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3-xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015). https://doi.org/10.1016/j.jmmm.2014.10.164

    Article  CAS  Google Scholar 

  29. V.K. Chakradhary, M.J. Akhtar, Absorption properties of CNF mixed cobalt nickel ferrite nanocomposite for radar and stealth applications. J. Magn. Magn. Mater. 525, 167592 (2021). https://doi.org/10.1016/j.jmmm.2020.167592

    Article  CAS  Google Scholar 

  30. A. Lassoued, J.F. Li, Magnetic and photocatalytic properties of Ni–Co ferrites. Solid State Sci. 104, 106199 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106199

    Article  CAS  Google Scholar 

  31. M. Hashim, S. Kumar, S.E. Shirsath, R.K. Kotnala, J. Shah, R. Kumar, Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139, 364–374 (2013). https://doi.org/10.1016/j.matchemphys.2012.09.019

    Article  CAS  Google Scholar 

  32. Q. Chang, H. Liang, B. Shi, X. Li, Y. Zhang, L. Zhang, Wu. Hongjing, Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 588, 336–345 (2021). https://doi.org/10.1016/j.jcis.2020.12.099

    Article  CAS  Google Scholar 

  33. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Structural, magnetic and electrical properties of Co-Ni-Mn ferrites synthesized by co-precipitation method. J. Alloys Compd. 492, 590–596 (2010). https://doi.org/10.1016/j.jallcom.2009.11.189

    Article  CAS  Google Scholar 

  34. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Youse, X-ray analysis of ZnO nanoparticles by Williamson e Hall and size e strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  35. M. George, A. Mary John, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006). https://doi.org/10.1016/j.jmmm.2005.08.029

    Article  CAS  Google Scholar 

  36. V.K. Chakradhary, A. Ansari, M.J. Akhtar, Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 469, 674–680 (2019). https://doi.org/10.1016/j.jmmm.2018.09.021

    Article  CAS  Google Scholar 

  37. B. Ali, S.M. Tasirin, P. Aminayi, Z. Yaakob, N.T. Ali, W. Noori, Non-supported nickel-based coral sponge-like porous magnetic alloys for catalytic production of syngas and carbon bio-nanofilaments via a biogas decomposition approach. Nanomaterials 8, 1053 (2018). https://doi.org/10.3390/NANO8121053

    Article  Google Scholar 

  38. J.M. Yang, W.J. Tsuo, F.S. Yen, Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates. J. Solid State Chem. 145, 50–57 (1999). https://doi.org/10.1006/jssc.1999.8215

    Article  CAS  Google Scholar 

  39. X. Wu, W. Chen, W. Wu, J. Wu, Q. Wang, Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions. J. Magn. Magn. Mater. 453, 246–253 (2018). https://doi.org/10.1016/j.jmmm.2018.01.057

    Article  CAS  Google Scholar 

  40. M. Mozaffari, J. Amighian, E. Darsheshdar, Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol-gel method. J. Magn. Magn. Mater. 350, 19–22 (2014). https://doi.org/10.1016/j.jmmm.2013.08.008

    Article  CAS  Google Scholar 

  41. A. Kuwabara, C.A.J. Fisher, Y.H. Ikuhara, H. Moriwake, H. Oki, Y. Ikuhara, The influence of charge ordering on the phase stability of spinel LiNi2O4. RSC Adv. 2, 12940–12948 (2012). https://doi.org/10.1039/c2ra21043f

    Article  CAS  Google Scholar 

  42. C. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandra Reddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013). https://doi.org/10.1016/j.ceramint.2012.09.087

    Article  CAS  Google Scholar 

  43. B. Gillot, P. Tailhades, Temperature dependence of oxidation behavior and coercivity evolution in fine-grained spinel ferrites. J. Magn. Magn. Mater. 208, 181–187 (2000). https://doi.org/10.1016/S0304-8853(99)00591-0

    Article  CAS  Google Scholar 

  44. J.S. Ghodake, R.C. Kambale, S.V. Salvi, S.R. Sawant, S.S. Suryavanshi, Electric properties of Co substituted Ni-Zn ferrites. J. Alloys Compd. 486, 830–834 (2009). https://doi.org/10.1016/j.jallcom.2009.07.075

    Article  CAS  Google Scholar 

  45. I.H. Gul, E. Pervaiz, Comparative study of NiFe2-xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol-gel combustion techniques. Mater. Res. Bull. 47, 1353–1361 (2012). https://doi.org/10.1016/j.materresbull.2012.03.005

    Article  CAS  Google Scholar 

  46. H. Parmar, R.V. Upadhyay, S. Rayaprol, V. Siruguri, Structural and magnetic properties of nickel–zinc ferrite nanocrystalline magnetic particles prepared by microwave combustion method. Indian J. Phys. 88, 1257–1264 (2014). https://doi.org/10.1007/s12648-014-0576-5

    Article  CAS  Google Scholar 

  47. H. Zhang, A. Chang, C. Peng, Preparation and characterization of Fe3+-doped Ni 0.9Co0.8Mn1.3xFexO4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng. 88, 2934–2940 (2011). https://doi.org/10.1016/j.mee.2011.04.023

    Article  CAS  Google Scholar 

  48. K.S. Rao, G.S. Choudary, K.H. Rao, C. Sujatha, Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Proced. Mater. Sci. 10, 19–27 (2015). https://doi.org/10.1016/j.mspro.2015.06.019

    Article  CAS  Google Scholar 

  49. H. Du, X. Yao, L. Zhang, Structure, IR spectra and dielectric properties of Bi2O3-ZnO-SnO2-Nb2O5 quarternary pyrochlore. Ceram. Int. 28, 231–234 (2002). https://doi.org/10.1016/S0272-8842(01)00084-0

    Article  CAS  Google Scholar 

  50. R. Tiwari, M. De, H.S. Tewari, S.K. Ghoshal, Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method. Results Phys. 16, 1–8 (2020). https://doi.org/10.1016/j.rinp.2019.102916

    Article  Google Scholar 

  51. B.P. Barbero, J.A. Gamboa, L.E. Cadús, Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl. Catal. B 65, 21–30 (2006). https://doi.org/10.1016/j.apcatb.2005.11.018

    Article  CAS  Google Scholar 

  52. A. Gholizadeh, The effects of A/B-site substitution on structural, redox and catalytic properties of lanthanum ferrite nanoparticles. J. Mater. Res. Technol. 8, 457–466 (2019). https://doi.org/10.1016/j.jmrt.2017.12.006

    Article  CAS  Google Scholar 

  53. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, M.I. Almalowi, Effect of vanadium doping on structural and magnetic properties of defective nano-nickel ferrite. Appl. Phys. A 124, 1–9 (2018). https://doi.org/10.1007/s00339-018-1721-3

    Article  CAS  Google Scholar 

  54. Z. Tan, T. Saito, F. Denis Romero, M. Amano Patino, M. Goto, W.T. Chen, Y.C. Chuang, H.S. Sheu, Y. Shimakawa, Hexagonal Perovskite Ba4Fe3NiO12 containing tetravalent Fe and Ni ions. Inorg. Chem. 57, 10410–10415 (2018). https://doi.org/10.1021/acs.inorgchem.8b01618

    Article  CAS  Google Scholar 

  55. C.D. Patel, P.N. Dhruv, S.S. Meena, C. Singh, S. Kavita, M. Ellouze, R.B. Jotania, Influence of Co4+−Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance characteristics of M-type barium–strontium hexagonal ferrites. Ceram. Int. 46, 24816–24830 (2020). https://doi.org/10.1016/j.ceramint.2020.05.326

    Article  CAS  Google Scholar 

  56. K.M. Batoo, F.A. Mir, M.S. Abd El-sadek, M. Shahabuddin, N. Ahmed, Extraordinary high dielectric constant, electrical and magnetic properties of ferrite nanoparticles at room temperature. J. Nanopart. Res. 15, 1–9 (2013). https://doi.org/10.1007/s11051-013-2067-6

    Article  CAS  Google Scholar 

  57. I. Bhat, S. Husain, W. Khan, S.I. Patil, Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process. Mater. Res. Bull. 48, 4506–4512 (2013). https://doi.org/10.1016/j.materresbull.2013.07.028

    Article  CAS  Google Scholar 

  58. L. Kumar, M. Kar, Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  CAS  Google Scholar 

  59. C.N. Chinnasamy, M. Senoue, B. Jeyadevan, O. Perales-Perez, K. Shinoda, K. Tohji, Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio. J. Colloid Interface Sci. 263, 80–83 (2003). https://doi.org/10.1016/S0021-9797(03)00258-3

    Article  CAS  Google Scholar 

  60. G.F. Dionne, Electron spins in ionic molecular structures, in Magnetic interactions and spin transport. (Springer, Boston, 2003), pp. 1–130

    Google Scholar 

  61. S. Debnath, R. Das, Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: Shows a correlation between them. J. Alloys Compd. 852, 156884 (2021). https://doi.org/10.1016/j.jallcom.2020.156884

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Maher Wahba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahba, A.M., Moharam, B.E.M. & Mahmoud, A.F. The impact of cation distribution on the structural and magnetic properties of nonstoichiometric Co0.5Ni0.5+xFe2−xO4 nanoferrites. J Mater Sci: Mater Electron 32, 14194–14206 (2021). https://doi.org/10.1007/s10854-021-05978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05978-4

Navigation