Skip to main content
Log in

Correlating cation distribution with the structural and magnetic properties of Co0.5Zn0.5AlxFe2–xO4 nanoferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Unprecedented analysis of the impact of high-level Al3+ substitution on the structural and magnetic properties of low-coercivity Co0.5Zn0.5AlxFe2−xO4 (0.3 ≤ x ≤ 0.8) nanoferrites prepared via autocombustion method is presented. Single-phase cubic structure has been assured for all samples using XRD patterns and FTIR spectra. Due to the notable difference in the ionic radii of Fe3+ and Al3+, structural defects are created for high substitution levels, which is to be balanced by cation redistribution and/or the appearance of Fe2+ and Co3+ cations. Rietveld analysis and size-strain plots were used to explain the non-monotonic change of the lattice parameter, microstrain and crystallite size. For the as-prepared samples, the estimated size ranged from 9 to 19 nm, which was confirmed by HRTEM images. Magnetic properties were deduced from MH loops traced at room temperature. Saturation magnetization (MS) decreased with increasing Al3+ content while coercivity (Hc) was fluctuating. Based on the experimental data of XRD, FTIR, and VSM, a cation distribution has been proposed and tightly correlated with the structural and magnetic properties. The significant reduction of the lattice parameter and coercivity for the sample with x = 0.8 upon sintering process has been explained in the light of the cation distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, USA, 2006)

    Google Scholar 

  2. M. Arruebo, M. Rodrigo Fernández-Pacheco, R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2.3, 22–32 (2007). https://doi.org/10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  3. Z.A. Gilani, M.S. Shifa, H.M.N.K. Asghar, M.A. Khan, M.N. Anjum, M.N. Usmani, R. Alic, M.F. Warsi, New LiCo0.5PrxFe2−xO4 nanoferrites: prepared via low cost technique for high density storage application. Ceram. Int. 44(2018), 1881–1885 (2018). https://doi.org/10.1016/j.ceramint.2017.10.126

    Article  Google Scholar 

  4. J.H. Hankiewicz, J.A. Stoll, J. Stroud, J. Davidson, K.L. Livesey, K. Tvrdy, A. Roshko, S.E. Russek, K. Stupic, P. Bilski, R.E. Camley, Z.J. Celinski, Nano-sized ferrite particles for magnetic resonance imaging thermometry. J. Magn. Magn. Mater. 469, 550–557 (2019). https://doi.org/10.1016/j.jmmm.2018.09.037

    Article  ADS  Google Scholar 

  5. Wu Kaidi, J. Li, C. Zhang, Zinc ferrite based gas sensors: a review. Ceram. Int. 45, 11143–11157 (2019). https://doi.org/10.1016/j.ceramint.2019.03.086

    Article  Google Scholar 

  6. D.R. Mane, S. Patil, D.D. Birajdar, A.B. Kadam, S.E. Shirsath, R.H. Kadam, Sol–gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: cation distribution, structural and magnetic properties. Mater. Chem. Phys. 126, 755–760 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.048

    Article  Google Scholar 

  7. S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. J. Alloys Compd. 509, 5055–5060 (2011). https://doi.org/10.1016/j.jallcom.2011.02.006

    Article  Google Scholar 

  8. E. Erdem, Electron beam curing of CoFe2O4 nanoparticles. Hybrid Mater 1, 62–70 (2014). https://doi.org/10.2478/afpuc-2014-0003

    Article  Google Scholar 

  9. Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009). https://doi.org/10.1016/j.poly.2009.06.061

    Article  Google Scholar 

  10. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116, 207–213 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  Google Scholar 

  11. A.M. Wahba, M.B. Mohamed, N.G. Imam, Correlating structural, magnetic, and luminescence properties with the cation distribution of Co0.5Zn0.5+xFe2–xO4 nanoferrite. J. Magn. Magn. Mater. 408, 51–59 (2016). https://doi.org/10.1016/j.jmmm.2016.02.027

    Article  ADS  Google Scholar 

  12. D. Peddis, N Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J. M. Greneche, D. Fiorani, Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 23, 1–8 (2011) https://iopscience.iop.org/0953-8984/23/42/426004

  13. E. Manova, D. Paneva, B. Kunev, C. Estournès, E. Riviere, K. Tenchev, A. Leaustic, I. Mitov, Mechanochemical synthesis and characterization of nanodimensional iron–cobalt spinel oxides. J. Alloys Compd. 485, 356–361 (2009). https://doi.org/10.1016/j.jallcom.2009.05.107

    Article  Google Scholar 

  14. S.J. Kim, B.R. Myoung, C.S. Kim, Neutron diffraction and exchange interaction on CoAlxFe2–xO4 (x = 0.1, 0.2). J. Magn. Magn. Mater. 272–276, 2161–2162 (2004). https://doi.org/10.1016/j.jmmm.2003.12.946

    Article  ADS  Google Scholar 

  15. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 323, 2748–2756 (2011). https://doi.org/10.1016/j.jmmm.2011.05.038

    Article  ADS  Google Scholar 

  16. Y. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B Condens Mater 337, 42–51 (2003). https://doi.org/10.1016/S0921-4526(03)00322-3

    Article  ADS  Google Scholar 

  17. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Thermomagnetic properties of Co1−xZnxFe2O4 (x = 0.1–0.5) nanoparticles. J. Magn. Magn. Mater. 303, 131–137 (2006). https://doi.org/10.1016/j.jmmm.2005.10.237

    Article  ADS  Google Scholar 

  18. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  Google Scholar 

  19. Y. Zhang, Z. Yang, D. Yin, Y. Liu, C. Fei, Composition and magnetic properties of cobalt ferrite nanoparticles prepared by the co-precipitation method. J. Magn. Magn. Mater. 322, 3470–3475 (2010). https://doi.org/10.1016/j.jmmm.2010.06.047

    Article  ADS  Google Scholar 

  20. A.R. Abbasian, M.S. Afarani, One-step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe16O4 nanoparticles. Appl Phys A 125, 1–12 (2019). https://doi.org/10.1007/s00339-019-3017-7

    Article  ADS  Google Scholar 

  21. M.P. Vinardell, M. Mitjans, Antitumor activities of metal oxide nanoparticles. Nanomaterials 5, 1004–1021 (2015). https://doi.org/10.3390/nano5021004

    Article  Google Scholar 

  22. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B (Amsterdam) 192, 55–69 (1993). https://doi.org/10.1016/S1748-0132(07)70084-1

    Article  ADS  Google Scholar 

  23. M. Ferrari, L. Lutterotti, Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction. J. Appl. Phys. 76(11), 7246–7255 (1994). https://doi.org/10.1063/1.358006

    Article  ADS  Google Scholar 

  24. A.B. Kulkarni, S.N. Mathad, Synthesis and structural analysis of Co–Zn–Cd Ferrite by Williamson-Hall and size–strain plot methods. Int. J Self-Propag. High-Temp. Synth. 27, 37–43 (2018). https://doi.org/10.3103/S106138621801003X

    Article  Google Scholar 

  25. L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013). https://doi.org/10.1016/j.jallcom.2012.10.009

    Article  Google Scholar 

  26. A.T. Raghavender, D. Pajic, K. Zadro, P. Tomislav Milekovic, K.M. Venkateshwar Rao, D.R. Jadhav, Synthesis and magnetic properties of NiFe2xAlxO4 nanoparticles. J. Magn. Magn. Mater. 316, 1–7 (2007). https://doi.org/10.1016/j.jmmm.2007.03.204

    Article  ADS  Google Scholar 

  27. H.M. Zaki, S. Al-Heniti, Synthesis and characterization of nanocrystalline MgAlxFe2xO4 ferrites. J. Mater. Res. 27, 2798–2805 (2012). https://doi.org/10.1557/jmr.2012.310

    Article  ADS  Google Scholar 

  28. S.J. Haralkar, R.H. Kadam, S.S. More, S.E. Shirsath, M.L. Mane, S. Patil, D.R. Mane, Intrinsic magnetic, structural and resistivity properties of ferromagnetic Mn0.5Zn0.5AlxFe2−xO4 nanoparticles. Mater. Res. Bull. 48, 1189–1196 (2013). https://doi.org/10.1016/j.materresbull.2012.12.018

    Article  Google Scholar 

  29. P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik, K.M. Jadhav, Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys. B 406, 4350–4354 (2011). https://doi.org/10.1016/j.physb.2011.08.066

    Article  ADS  Google Scholar 

  30. E.V. Gopalan, P.A. Joy, I.A. Al-Omari, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, On the structural, magnetic and electrical properties of sol–gel derived nanosized cobalt ferrite. J. Alloys Compd. 485, 711–717 (2009). https://doi.org/10.1016/j.jallcom.2009.06.033

    Article  Google Scholar 

  31. K.J. Standley, Oxide Magnetic Material (Clarendon, Oxford, 1972)

    Google Scholar 

  32. R.S. Turtelli, M. Atif, N. Mehmood, F. Kubel, K. Biernack, W. Linert, R. Grossinger, C. Kapusta, M. Sikora, Interplay between the cation distribution and production methods in cobalt ferrite. Mater. Chem. Phys. 132, 832–838 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.020

    Article  Google Scholar 

  33. A.M. Wahba, M.B. Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015). https://doi.org/10.1016/j.jmmm.2014.10.164

    Article  ADS  Google Scholar 

  34. P. Vlazan, M. Stefanescu, P. Barvinschi, M. Stoia, Study on the formation of CoxFe3xO4 system using two low temperature synthesis methods. Mater. Res. Bull. 47, 4119–4125 (2012). https://doi.org/10.1016/j.materresbull.2012.08.050

    Article  Google Scholar 

  35. R.N. Bhowmik, N. Naresh, Structure, ac conductivity and complex impedance study of Co3O4 and Fe3O4mixed spinel ferrites. Int. J. Eng. Sci. Tech. 8(2), 40–52 (2010). https://doi.org/10.4314/ijest.v2i8.63779

    Article  Google Scholar 

  36. P. Tarte, Infrared spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A-M (1967). https://doi.org/10.1016/0584-8539(67)80100-4

    Article  Google Scholar 

  37. A.M. Wahba, N.G. Imam, M.B. Mohamed, Flower-like morphology of blue and greenish-gray ZnCoxAl2−xO4 nanopigments. J. Mol. Struct. 1105, 61–69 (2016). https://doi.org/10.1016/j.molstruc.2015.10.052

    Article  ADS  Google Scholar 

  38. S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 1038, 40–44 (2013). https://doi.org/10.1016/j.molstruc.2012.12.053

    Article  ADS  Google Scholar 

  39. A.M. Wahba, M.B. Mohamed, Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram. Int. 40(4), 6127–6135 (2014). https://doi.org/10.1016/j.ceramint.2013.11.064

    Article  Google Scholar 

  40. A.I. Borhan, A.R. Iordan, M.N. Palamaru, Correlation between structural, magnetic and electrical properties of nanocrystalline Al3+ substituted zinc ferrite. Mater. Res. Bull. 48, 2549–2556 (2013). https://doi.org/10.1016/j.materresbull.2013.03.012

    Article  Google Scholar 

  41. L. Kumar, M. Kar, Influence ofAl3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  ADS  Google Scholar 

  42. M.H. Ehsani, S. Esmaeili, M. Aghazadeh, P. Kameli, F. Shariatmadar Tehrani, I. Karimzadeh, An investigation on the impact of Al doping on the structural and magnetic properties of Fe3O4 nanoparticles. Appl. Phys. A 125, 1–9 (2019). https://doi.org/10.1007/s00339-019-2572-2

    Article  Google Scholar 

  43. V. Rusanov, V. Gushterov, S. Nikolov, A.X. Trautwein, Detailed Mössbauer study of the cation distribution in CoFe2O4 ferrites. Hyperfine Interact. 191, 67–74 (2009). https://doi.org/10.1007/978-3-642-01370-6_52

    Article  ADS  Google Scholar 

  44. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Structural, magnetic and electrical properties of Co–Ni–Mn ferrites synthesized by co-precipitation method. J. Alloys Compd. 492, 590–596 (2010). https://doi.org/10.1016/j.jallcom.2009.11.189

    Article  Google Scholar 

  45. P.G. Bercoff, H.R. Bertorello, Localized canting effect in Zn-substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56–62 (2000). https://doi.org/10.1016/S0304-8853(00)00011-1

    Article  ADS  Google Scholar 

  46. K.S. Rao, A.M. Kumar, M.C. Varma, G.S. Choudary, K.H. Rao, Cation distribution of titanium substituted cobalt ferrites. J. Alloys Compd. 488, L6–L9 (2009). https://doi.org/10.1016/j.jallcom.2009.08.086

    Article  Google Scholar 

  47. H.E. Zhang, B.F. Zhang, G.F. Wang, X.H. Dong, Y. Gao, The structure and magnetic properties of Zn1−xNixFe2O4 ferrite nanoparticles prepared by sol–gel auto-combustion. J. Magn. Magn. Mater 312, 126–130 (2007). https://doi.org/10.1016/j.jmmm.2006.09.016

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Maher Wahba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahba, A.M., Mohamed, M.B. Correlating cation distribution with the structural and magnetic properties of Co0.5Zn0.5AlxFe2–xO4 nanoferrites. Appl. Phys. A 126, 488 (2020). https://doi.org/10.1007/s00339-020-03692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03692-2

Keywords

Navigation