Skip to main content
Log in

Assessment of crystallographic and magnetic phase stabilities of cubic copper ferrite at shocked conditions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, dynamic shock wave-driven investigation carried out on the crystallographic phase stabilities of nano-materials has led to the accumulation of massive explosion of innovations which materialize in identifying the efficient materials so that such kinds of assessments are highly required before putting them into practical applications. Surprisingly, at shocked conditions, most of the materials are found to have undergone phase transition or a variety of changes have been observed in their stability as well as efficiency. Hence, device engineers are highly focused on the search of high shock-resistant materials for applications point of view especially for aerospace, defense, and military applications. In the present context, we have chosen one of the most familiar divalent metal ferrites of cubic copper ferrite nanocrystalline material (CuFe2O4 NPs) for the analysis of structural stability and the results have been screened by X-ray diffraction (XRD) as well as ultra-violet diffuse reflectance spectroscopic (UV-DRS) techniques. Magnetic phase stability has been evaluated by vibrating sample magnetometer (VSM). Interestingly, the title ferrite does not experience any crystallographic and magnetic phase transition even though it has polymorphic nature and variety of magnetic states. Therefore, it could be confirmed that CuFe2O4 NPs have considerable shock-resistant behavior for both crystallographic and magnetic phases. The results are discussed in the upcoming sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.D. Saccone, S. Ferrari, D. Errandonea, F. Grinblat, V. Bilovol, S. Agouram, Cobalt ferrite nanoparticles under high pressure. J. Appl. Phys. 118, 075903 (2015)

    Article  Google Scholar 

  2. Z. Wang, P. Lazor, S.K. Saxena, H.S. O’Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Mater. Res. Bull. 37, 1589–1602 (2002)

    Article  CAS  Google Scholar 

  3. Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, Y.S. Zhao, D. Schiferl, A. Waskowska, High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4. Phys. Rev. B 68, 094101 (2003)

    Article  Google Scholar 

  4. D Errandonea, AB2O4 compounds at high pressures. Springer Series in Materials Science 189 (2014) https://doi.org/10.1007/978-3-642-40367-5_2

  5. D. Levy, A. Pavese, M. Hanfland, Phase transition of synthetic zinc spinel ferrite (ZnFe2O4) at high pressure from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 27, 638–644 (2000)

    Article  CAS  Google Scholar 

  6. J. Zhang, Y. Zhang, X. Wu, Y. Ma, S.Y. Chien, R. Guan, D. Zhang, B. Yang, B. Yan, J. Yang, Correlation between structural changes and electrical transport properties of spinel ZnFe2O4 nanoparticles under high pressure. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b15259

    Article  Google Scholar 

  7. B. Li, Y. Ding, W. Yang, L. Wang, B. Zou, J. Shu, S. Sinogeikin, C. Park, G. Zou, H.K. Mao, Calcium with the β-tin structure at high pressure and low temperature. PNAS 109, 16459–16462 (2012)

    Article  CAS  Google Scholar 

  8. A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Impact of shock waves on vibrational and structural properties of glycine phosphite. Solid State Sci. 110, 106452 (2020)

    Article  CAS  Google Scholar 

  9. K. Ichiyanagi, S. Takagi, N. Kawai, R. Fukaya, S. Nozawa, K.G. Nakamura, K.D. Liss, M. Kimura, S.I. Adachi, Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci. Rep. 9, 7604 (2019)

    Article  Google Scholar 

  10. V. Jayaram, K.P.J. Reddy, Catalytic effect of CeO2-stabilized ZrO2 ceramics with strong shock-heated mono- and Di-atomic gases. J. Am. Ceram. Soc. 99, 4128–4136 (2016)

    Article  Google Scholar 

  11. N.K. Reddy, V. Jayaram, E. Arunan, Y.B. Kwon, W.J. Moon, K.P.J. Reddy, Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles. Diam. Relat. Mater. 35, 53–57 (2013)

    Article  CAS  Google Scholar 

  12. S. Zhaoa, B. Kada, B.A. Remington, J.C. La Salvia, C.E. Wehrenberg, K.D. Behler, M.A. Meyers, Directional amorphization of boron carbide subjected to laser shock compression. PNAS 13, 1–6 (2016)

    Google Scholar 

  13. S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  14. A. Rita, A. Sivakumar, S.A.M.B. Dhas, Investigation of structural and magnetic phase behaviour of nickel oxide nanoparticles under shock wave recovery experiment. J. Supercond. Nov. Magn. 33, 1845–1849 (2020)

    Article  CAS  Google Scholar 

  15. A. Rita, A. Sivakumar, S.A.M.B. Dhas, Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruct. Chem. 9, 225–230 (2019)

    Article  CAS  Google Scholar 

  16. A. Rita, A. Sivakumar, M. Jose, S.A.M.B. Dhas, Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater. Res. Express 6, 095035 (2019)

    Article  CAS  Google Scholar 

  17. A. Sivakumar, S. Soundarya, S.S.J. Dhas, K.K. Bharathi, S.A.M.B. Dhas, Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)

    Article  CAS  Google Scholar 

  18. A. Rita, A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Structure, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J. Nanostruct. Chem. 10, 309–316 (2020)

    Article  Google Scholar 

  19. A. Sivakumar, C. Victor, M.M. Nayak, S.A.M.B. Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions Mater. Res. Express 6, 045031 (2019)

    Article  Google Scholar 

  20. V. Mowlika, A. Sivakumar, S.A.M.B. Dhas, C.S. Naveen, A.R. Phani, R. Robert, Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J. Nanostruct. Chem. 10, 203–209 (2020)

    Article  CAS  Google Scholar 

  21. A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions . Solid State. Sci. 107, 106340 (2020)

    Article  CAS  Google Scholar 

  22. V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas, R. Robert, Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions. J. Mater. Sci. 31, 14851–14858 (2020)

    CAS  Google Scholar 

  23. R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, C.L. Jia, H. Wang, Tuning conductivity and magnetism of CuFe2O4 via cation redistribution. RSC Adv. 7, 21926 (2017)

    Article  Google Scholar 

  24. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323 (2012)

    Article  CAS  Google Scholar 

  25. S.L. Chinke, I.S. Sandhu, D.R. Saroha, P.S. Alegaonkar, Graphene-like nanoflakes for shock absorption applications. ACS Appl. Nano Mater. 1, 6027–6037 (2018)

    Article  CAS  Google Scholar 

  26. N.K. Gopinath, G. Jagadeesh, B. Basu, Shock wave-material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019)

    Google Scholar 

  27. A. Subha, M.G. Shalini, B. Sahu, S.C. Sahoo, Structural transformation and magnetic properties of copper ferrite nanoparticles prepared by sol–gel method. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-0221-8

    Article  Google Scholar 

  28. A.M. Balagurov, I.A. Bobrikov, VYu. Pomjakushin, D.V. Sheptyakov, VYu. Yushankhai, Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction. J. Magn. Magn. Mater. 374, 591–599 (2015)

    Article  CAS  Google Scholar 

  29. D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyu, Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. J. Phys. D 43, 195004 (2010)

    Article  Google Scholar 

  30. A. Sivakumar, S. Balachandar, S.A.M.B. Dhas, Measurement of “shock wave parameters” in a novel table-top shock tube using microphones. Hum. Fact. Mech. Eng. Defense Saf. 4, 3 (2020)

    Article  Google Scholar 

  31. S. Atroshenko, A. Divakov, Y. Meshcheryakov, N. Naumova, Effect of reloading on dynamic recrystallization in shock deformed aluminum alloy. Mater. Sci. Form 794, 755–760 (2014)

    Article  Google Scholar 

  32. A. Sivakumar, A. Rita, S.S.J. Dhas, S.A.M.B. Dhas, Tuning of surface plasmon resonance of silver nano particles by shock waves for plasmonic device applications. Opt. Laser. Technol. 128, 106235 (2020)

    Article  CAS  Google Scholar 

  33. S. Park, J.H. Baek, L. Zhang, J.M. Lee, K.H. Stone, I.S. Cho, J. Guo, H.S. Jung, X. Zheng, Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 7, 5867–5874 (2019)

    Article  CAS  Google Scholar 

  34. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998)

    Article  CAS  Google Scholar 

  35. B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis. Dalton Trans. 43, 7930 (2014)

    Article  CAS  Google Scholar 

  36. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)

    Article  CAS  Google Scholar 

  37. C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology (DST), India for funding through DST-FIST program (SR/FST/College-2017/130 (c)).

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no RG-1440-071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Dhas, S.S.J., Almansour, A.I. et al. Assessment of crystallographic and magnetic phase stabilities of cubic copper ferrite at shocked conditions. J Mater Sci: Mater Electron 32, 12732–12742 (2021). https://doi.org/10.1007/s10854-021-05910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05910-w

Navigation